183 CANINE EMBRYOS OBTAINED BY INTRACYTOPLASMIC SPERM INJECTION

2014 ◽  
Vol 26 (1) ◽  
pp. 206 ◽  
Author(s):  
S. Chastant-Maillard ◽  
K. Reynaud ◽  
S. Thoumire ◽  
M. Chebrout

In vitro fertilization encounters 2 specific difficulties in the canine species, with no puppies born to date: low penetration rates (10–50%) and high polyspermia (around 50% of fertilized oocytes; Saint-Dizier et al. 2001 J. Reprod. Fert. Suppl. 57, 147–150). The objectives of the study were to test whether intracytoplasmic sperm injection (ICSI), which overcomes these 2 obstacles, could allow production of canine embryos, using in vivo- or in vitro-matured oocytes. The time of ovulation was determined on 8 Beagle bitches from our experimental kennel by blood progesterone assay and transabdominal ultrasound examination. After ovariohysterectomy 82 to 100 h after ovulation, 58 metaphase II (MII) oocytes were collected by tubal flushing. In parallel, 88 oocytes from 6 anoestrus bitches were matured in vitro (M199 + 20% fetal calf serum for 72 h in 5% CO2 at 38°C). Sperm was collected from 1 Beagle dog with excellent fertility record at natural mating. The sperm was diluted 1 : 100 in PBS/BSA without any selection process. Intracytoplasmic sperm injection was performed at 38°C in M199 HEPES + 20% BSA (4-μm injection pipette; 120-μm holding pipette). One motile spermatozoon of normal morphology was injected per oocyte. Injected oocytes were cultured in vitro for 48 h after injection (M199 + 20% fetal calf serum in 5% CO2 at 38°C) in 4-well open dishes. Oocytes were then fixed and DNA and tubulin were stained for observation by confocal microscopy (Chebrout et al. 2012 Microsc. Microanal. 18, 483–492). Among the 58 MII oocytes recovered in vivo, 7.4% lysed at injection and 20% degenerated during the 48 h after injection. Among the 40 injected oocytes still alive, 6 fragmented (15%) and 4 developed as embryos [10%; 2-pronuclei (n = 2), 2-cell and 6-cell). None of the other oocytes showed decondensed female chromatin. Among the 88 oocytes incubated for in vitro maturation, 13 (14.8%) reached MII. These were successfully injected; 48 h after injection, 3 were embryos at the 2-cell stage and 10 were at the MII stage with a condensed sperm head. Fifty-one non-mature oocytes were injected; 31 were at the germinal vesicle (GV) stage and the stage of others was not determined. Of the GV oocytes, 71% degenerated during culture after injection. The 9 surviving oocytes were still at the GV stage with condensed sperm head 48 h after injection. In conclusion, canine embryos can be obtained through ICSI. Nevertheless, this procedure induced low activation rates. Development at later stages, especially after transfer into a recipient female, is to be evaluated, in particular for in vitro-produced MII oocytes, of lower cytoplasmic competence (Viaris et al. 2008 Reprod. Fert. Dev. 20, 626–639).

2016 ◽  
Vol 28 (2) ◽  
pp. 212
Author(s):  
M. Takayama ◽  
O. Dochi ◽  
K. Imai

In recent years, the use of ovum pick up (OPU) and IVF for embryo production has increased worldwide; however, the conception rate of embryo transfer is lower for OPU-IVF embryos than for in vivo-derived embryos. This study aimed to determine the efficacy of embryo selection by a 3-step observation method by using a micro-well culture dish (Dai Nippon Printing, Tokyo, Japan). In this study, 9 Holstein and 15 Japanese Black cows were used, and the OPU-IVF was conducted from October 2014 to May 2015. The collected cumulus-oocyte complexes (COC) were cultured for 22 h in 25 mM HEPES-buffered TCM-199 supplemented with 5% calf serum (CS) and 0.02 AU mL–1 of FSH. Sperm (at a final concentration of 5 × 106 spermatozoa mL–1) were incubated with COC for 6 h. After insemination, presumptive zygotes were separated from cumulus cells and sperm by pipetting. Then, the presumptive zygotes were cultured for 9 days in CR1aa supplemented with 5% CS by using a micro-well culture dish. Kinetics and morphology were observed at 27, 31, and 55 h post-insemination (hpi). The presumptive zygotes were divided to 3 groups (more than 2 cells, 2 cells, and no cleavage) at 27 and 31 hpi. Then, embryos at the 2-cell stage at 31 hpi were divided into 2 groups: 2-cell with normal cleavage and 2-cell embryos with abnormal cleavage (unequal cleavage, 2-cell with fragments, and 2-cell with protrusion). Subsequently, embryos were classified as 8-cell and more than 8 cell, or less than 8 cell at 55 hpi. The blastocyst rate (BL%) was analysed at 7, 8, and 9 days post IVF. Embryos selected by the 3-step observation method were used for fresh embryo transfer. The data were analysed by chi-squared test. In total, 856 oocytes were collected by OPU and 633 oocytes were cultured, of which 39.7% (263/663) developed to the blastocyst stage. The BL% of 2-cell embryos (72.5%, 116/160) was significantly higher (P < 0.01) than that of no cleavage (47.0%, 117/249) at 27 hpi. The BL% of 2-cell (65.4%, 206/315) and more than 2-cell (53.0%, 35/66) was significantly higher (P < 0.01 and P < 0.05) than that of embryos divided as no cleavage (25.9%, 22/85) at 31 hpi. The BL% was not significantly different between 2-cell with normal cleavage (68.5%, 172/251) and abnormal cleavage (53.1%, 34/64). The BL% of 8-cell and more than 8-cell stage (72.8%, 182/250) was significantly higher (P < 0.01) than that of embryos with less than 8 cells (38.8%, 81/209) at 55 hpi. Overall, 2-cell embryos at 27 hpi, 2-cell embryos with normal cleavage at 31 hpi, and 8-cell and more than 8 cell at 55 hpi showed the highest BL% (82.1%, 78/91). The conception rate was higher for following the selected fresh embryo transfer that was 70.6% (12/17) than average of in vitro fertilization embryos transfer that was 40.0%. These results demonstrate that the 3-step observation method used in this study can be effectively applied for the selection of IVF embryos that have a strong ability to develop into blastocysts and high competence for conception.


Author(s):  
Razieh Doroudi ◽  
Zohre Changizi ◽  
Seyed Noureddin Nematollahi-Mahani

Background: Vitrification as the most efficient method of cryopreservation, enables successful storage of oocytes for couples who undergo specific procedures including surgery and chemotherapy. However, the efficacy of in vitro maturation (IVM) methods with vitrified germinal vesicle (GV) oocytes could be improved. Objective: As melatonin and follicular fluid (FF) might enhance IVM conditions, we used these supplements to assess the maturation rate of vitrified GV oocytes and their artificial fertilization rate. Materials and Methods: Four hundred mouse GV oocytes were harvested, vitrified, and assigned into control (C-Vit-GV) and treatment groups of melatonin (M-Vit-GV), human follicular fluid (HFF-Vit-GV), and a combination (M + HFF-Vit-GV). A non-vitrified group of GV oocytes (non-Vit-GV) and a group of in vivo matured metaphase II (Vivo-MII) oocytes served as control groups to evaluate the vitrification and IVM conditions, respectively. Maturation of GV oocytes to MII and further development to two-cell-stage embryos were determined in the different groups. Results: Development to two-cell embryos was comparable between the Vivo-MII and non-Vit-GV groups. IVM and in vitro fertilization (IVF) results in the non-Vit-GV group were also comparable with the C-Vit-GV oocytes. In addition, the IVM and IVF outcomes were similar across the different treatment groups including the M-Vit-GV, HFF-Vit-GV, M + HFF-Vit-GV, and C-Vit-GV oocytes. Conclusion: Employing an appropriate technique of vitrification followed by suitable IVM conditions can lead to reasonable IVF outcomes which may not benefit from extra supplementations. However, whether utilizing other supplementation formulas could improve the outcome requires further investigation. Key words: Vitrification, Germinal vesicle, In vitro oocyte maturation, Melatonin, Follicular fluid.


2005 ◽  
Vol 17 (9) ◽  
pp. 123
Author(s):  
N. R. Borg ◽  
M. K. Holland

Rat in vitro fertilization (IVF) and culture (IVC) is attempted by few because of its reputation for difficulty. Currently very few functional rat in vitro systems (IVS) exist for sperm–oocyte interaction research. Successful fertilization of rat metaphase II (MII) oocytes was achieved with two different media, Enriched Krebs Ringer Bicarbonate (EKRB) (70.2%) and M16 (57.4%). Using this IVS we have shown that the rat germinal vesicle-intact (GV-i) oocyte lacks the necessary maturity to interact with capacitated caudal epididymal spermatozoa, whether zona pellucida intact (ZP-i) or free (ZP-f). Proteomic analysis of the protein profile of the oolemma from the GV-i stage through to the MII stage in oocytes is being conducted to characterize any maturational changes that may occur. In addition we provide initial evidence to suggest that an acrosome-intact spermatozoa can fuse with the oolemma of a ZP-f MII oocyte during IVF. Although high percentages of polyspermic embryos in ZP-f IVF (64.8–100%) were observed, the possibility that the rat oolemma may undergo a post-fusion block to polyspermy was implied by a small proportion of normally fertilized embryos (3.8–17.0%) in M16 supplemented with different ratios of hyperactived spermatozoa. Despite successful culture to the blastocyst stage for in vivo fertilized zygotes (33.73%) and 2-cell stage embryos (79.3%), IVF embryos have repeatedly failed to develop in culture. Two dimensional analyses of the protein profile of oocytes/embryos immediately prior to fertilization (MII oocyte–101 spots) and the maternal to zygotic transition (MZT) (zygotes–59 spots and 2-cell embryos–84 spots) has shown a difference in patterns of protein expressed. Comparison of IVF zygotes (41 spots) obtained from EKRB displayed reduced protein expression suggesting that nuclear maturation and/or MZT is not being adequately supported. These data illustrate that rat IVF and IVC require suitable media if its problematic reputation is finally to be shed.


2005 ◽  
Vol 17 (8) ◽  
pp. 751 ◽  
Author(s):  
Mona E. Pedersen ◽  
Øzen Banu Øzdas ◽  
Wenche Farstad ◽  
Aage Tverdal ◽  
Ingrid Olsaker

In this study the synthetic oviduct fluid (SOF) system with bovine oviduct epithelial cell (BOEC) co-culture is compared with an SOF system with common protein supplements. One thousand six hundred bovine embryos were cultured in SOF media supplemented with BOEC, fetal calf serum (FCS) and bovine serum albumin (BSA). Eight different culture groups were assigned according to the different supplementation factors. Developmental competence and the expression levels of five genes, namely glucose transporter-1 (Glut-1), heat shock protein 70 (HSP), connexin43 (Cx43), β-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), analysed as mRNA by using reverse transcription–polymerase chain reaction, were measured on bovine embryos cultured for 9 days. Gene expression of these in vitro-produced embryos was compared with the gene expression of in vivo-produced embryos. There was no significant difference found in embryo developmental competence between the Day 9 embryos in BOEC co-culture, FCS and BSA supplements in SOF media. However, differences in gene expression were observed. With respect to gene expression in in vivo and in vitro embryos, BOEC co-culture affected the same genes as did supplementation with FCS and BSA. HSP was the only gene that differed significantly between in vitro and in vivo embryos. When the different in vitro groups were compared, a significant difference between the BOEC co-culture and the FCS supplementation groups due to Glut-1 expression was observed.


2006 ◽  
Vol 18 (2) ◽  
pp. 248
Author(s):  
S.-G. Lee ◽  
C.-H. Park ◽  
D.-H. Choi ◽  
H.-Y. Son ◽  
C.-K. Lee

Use of blastocysts produced in vitro would be an efficient way to generate embryonic stem (ES) cells for the production of transgenic animals and the study of developmental gene regulation. In pigs, the morphology and cell number of in vitro-produced blastocysts are inferior to these parameters in their in vivo counterparts. Therefore, establishment of ES cells from blastocysts produced in vitro might be hindered by poor embryo quality. The objective of this study was to increase the cell number of blastocysts derived by aggregating 4–8-cell stage porcine embryos produced in vitro. Cumulus–oocyte complexes were collected from prepubertal gilt ovaries, and matured in vitro. Embryos at the 4–8-cell stage were produced by culturing embryos for two days after in vitro fertilization (IVF). After removal of the zona pellucida with acid Tyrode’s solution, one (1X), two (2X), and three (3X) 4–8-cell stage embryos were aggregated by co-culturing them in aggregation plates followed by culturing to the blastocyst stage. After 7 days, the developmental ability and the number of cells in aggregated embryos were determined by staining with Hoechst 33342 and propidium iodide. The percentage of blastocysts was higher in both 2X and 3X aggregated embryos compared to that of 1X and that of intact controls (Table 1). The cell number of blastocysts also increased in aggregated embryos compared to that of non-aggregated (1X) embryos and controls. This result suggests that aggregation might improve the quality of in vitro-fertilized porcine blastocysts by increasing cell numbers, thus becoming a useful resource for isolation and establishment of porcine ES cells. Further studies are required to investigate the quality of the aggregated embryos in terms of increasing the pluripotent cell population by staining for Oct-4 and to apply improved aggregation methods in nuclear-transferred (NT) porcine embryos. Table 1. Development, cell number, and ICM ratio of aggregated porcine embryos


2006 ◽  
Vol 18 (2) ◽  
pp. 157 ◽  
Author(s):  
K. Hiruma ◽  
H. Ueda ◽  
H. Saito ◽  
C. Tanaka ◽  
N. Maeda ◽  
...  

To date only in vivo-produced embryos have successfully produced live piglets after cryopreservation. In this study, we aimed to produce piglets from vitrified embryos derived from in vitro matured (IVM) oocytes. Cumulus-oocyte complexes collected from ovaries obtained at a local slaughterhouse were matured for 44 to 45 h in NCSU23 MEDIUM supplemented with 0.6 mM cysteine, 10 ng/mL epidermal growth factor, 10% (v/v) porcine follicular fluid, 75 �g/mL potassium penicillin G, 50 �g/mL streptomycin sulfate, and 10 IU/mL eCG/ hCG. These IVM oocytes were either activated for parthenogenesis or in vitro-fertilized (IVF). For IVF, oocytes were incubated with 5 � 106/mL of cryopreserved epididymal sperm in PGM-tac medium (Yoshioka et al. 2003 Biol. Reprod. 69, 2092-2099) for 20 h. Embryos were treated for removal of cytoplasmic lipid droplets (delipation; Nagashima et al. 1995 Nature 374, 416) at the 4- to 8-cell stages, around 50 to 54 h after activation or insemination. After culture in NCSU23 for 15 h, they were vitrified by the minimum volume cooling (MVC) method. Embryos were equilibrated with equilibration solution containing 7.5% (v/v) ethylene glycol (EG), 7.5% (v/v) dimethylsulfoxide (DMSO), and 20% (v/v) calf serum for 4 min, followed by exposure to vitrification solution containing 15% EG, 15% DMSO, 0.5 M sucrose, and 20% calf serum. Embryos were then loaded onto a Cryotop (Kitazato Supply Co., Tokyo, Japan) and immediately plunged into liquid nitrogen. Vitrified embryos were examined for viability in vitro and in vivo after warming. Their in vitro developmental competence was compared to that of corresponding control (nonvitrified) embryos. Vitrified 4- to 8-cell stage embryos, both parthenogenetic and IVF, showed developmental competence into blastocysts comparable to that of control embryos (parthenogenetic: 46.8%, 36/77 vs. 51.7%, 31/60; IVF: 40.0%, 30/75 vs. 44.3%, 35/79). Of four surrogate gilts that received a total of 251 vitrified parthenogenetic embryos, three became pregnant and had 20 fetuses (8.0%, 22 to 23 days old). Three surrogates gilts that received 267 vitrified IVF embryos all became pregnant. Of those, the one that received 47 embryos was confirmed to have eight fetuses (17.0%, 22 days old) by autopsy. The other two were examined by ultrasonography at 56 and 95 days of gestation and found to be pregnant. These results suggest that porcine embryos derived from IVM oocytes have a potential to develop into live offspring after delipation and MVC vitrification. This study was supported by PROBRAIN.


2008 ◽  
Vol 20 (1) ◽  
pp. 118 ◽  
Author(s):  
M. C. Gómez ◽  
N. Kagawa ◽  
C. E. Pope ◽  
M. Kuwayama ◽  
S. P. Leibo ◽  
...  

The ability to cryopreserve female gametes efficiently holds immense economic and genetic implications. The purpose of the present project was to determine if domestic cat oocytes could be cryopreserved successfully by use of the Cryotop method. We evaluated (a) cleavage frequency after in vitro fertilization (IVF) v. intracytoplasmic sperm injection (ICSI) of in vivo- and in vitro-matured oocytes after vitrification, and (b) fetal development after transfer of resultant embryos into recipients. In vivo-matured cumulus–oocyte complexes (COCs) were recovered from gonadotropin-treated donors at 24 h after LH treatment, denuded of cumulus cells, and examined for the presence of the first polar body (PB). In vitro-matured COCs were obtained from ovaries donated by local clinics and placed into maturation medium for 24 h before cumulus cells were removed and PB status was determined. Oocytes were cryopreserved by the Cryotop method (Kuwayama et al. 2005 Reprod. Biomed. Online 11, 608–614) in a vitrification solution consisting of 15% DMSO, 15% ethylene glycol, and 18% sucrose. For IVF, oocytes were co-incubated with 1 � 106 motile spermatozoa mL–1 in droplets of modified Tyrode's medium in 5% CO2/air at 38�C (Pope et al. 2006 Theriogenology 66, 59–71). For ICSI, an immobilized spermatozoon was loaded into the injection pipette, which was then pushed through the zona pellucida into the ooplasm. After a minimal amount of ooplasm was aspirated into the pipette, the spermatozoon was carefully expelled, along with the aspirated ooplasm. After ICSI, or at 5 or 18 h post-insemination, in vivo- and in vitro-matured oocytes, respectively, were rinsed and placed in IVC-1 medium (Pope et al. 2006). As assessed by normal morphological appearance after liquefaction, the survival rate of both in vivo- and in vitro-matured oocytes was >90% (93–97%). For in vitro-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 73% (16/22) and 53% (30/57), respectively, as compared to 68% (19/28) after ICSI of vitrified oocytes (P > 0.05). For in vivo-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 55% (18/33) and 35% (6/17), respectively, compared to 50% (10/20) after ICSI of vitrified oocytes (P > 0.05). At 18–20 h after ICSI, 18 presumptive zygotes and four 2-cell embryos derived from vitrified in vitro-matured oocytes and 19 presumptive zygotes produced from seven in vivo-matured and 12 in vitro-matured vitrified oocytes were transferred by laparoscopy into the oviducts of two recipients at 24–26 h after oocyte retrieval. The two recipients were 9-month-old IVF/ET-derived females produced with X-sperm sorted by flow cytometry. At ultrasonography on Day 22, both recipients were pregnant, with three live fetuses observed in one recipient and one live fetus seen in the second recipient. On Day 63 and Day 66 of gestation, four live kittens were born, without assistance, to the two recipients. The one male and three female kittens weighed an average of 131 g. In summary, in vivo viability of zygotes/embryos produced by ICSI of cat oocytes vitrified by the Cryotop method was demonstrated by the birth of live kittens following transfer to recipients.


Zygote ◽  
2012 ◽  
Vol 22 (2) ◽  
pp. 146-157 ◽  
Author(s):  
Daniela Martins Paschoal ◽  
Mateus José Sudano ◽  
Midyan Daroz Guastali ◽  
Rosiára Rosária Dias Maziero ◽  
Letícia Ferrari Crocomo ◽  
...  

SummaryThe objective of this study was to assess the viability and cryotolerance of zebu embryos produced in vitro with or without the addition of fetal calf serum (FCS) and forskolin (F). Embryos produced in vivo were used as a control. Presumptive zygotes were cultured in modified synthetic oviductal fluid supplemented with amino acids (SOFaa), bovine serum albumin (BSA) and with (2.5%) or without (0%) FCS. On day 6 of growth, the embryos from each group were divided into treatments with or without 10 μM F to induce embryonic lipolysis, comprising a total of four experimental groups: 2.5% FCS, 0% FCS, 2.5% + F and 0% + F. For vitrification, embryos were exposed to vitrification solution 1 (5 M EG (ethylene glycol)) for 3 min and then transferred to vitrification solution 2 (7 M EG, 0.5 M galactose solution and 18% (w/v) Ficoll 70) before being introduced to liquid nitrogen. The presence of FCS in the culture medium resulted in the production of embryos with a similar rate of damaged cells compared with in vivo-produced embryos. After vitrification, the 2.5% FCS group had a significantly higher rate of damaged cells when compared with the other groups (P < 0.05). The results of this experiment indicated that the omission of FCS and the addition of forskolin do not have deleterious effect on embryo production rates. In addition, embryos produced in the presence of FCS had greater sensitivity to cryopreservation, but this effect was reversed when forskolin was added to the medium, which improved embryo survival without affecting embryo development and quality after vitrification.


2004 ◽  
Vol 16 (6) ◽  
pp. 605 ◽  
Author(s):  
J. A. Skidmore ◽  
M. Billah ◽  
N. M. Loskutoff

The present paper describes experiments designed to investigate methods for cryopreserving embryos from dromedary camels. Because preliminary studies had shown ethanediol to be the best cryoprotectant to use for camel embryos, the current experiments were performed to determine the minimum exposure time to 1.5 m ethanediol required to achieve cryoprotection. The uteri of 30 donor camels were flushed non-surgically 8 days after mating. Embryos were recovered and 158 were assigned to one of three groups, which were exposed to 1.5 m ethanediol for either 10 min (n = 67), 5 min (n = 51) or 1 min (n = 40). Embryos were subsequently thawed and rehydrated by expelling either directly into holding medium (HM; HEPES-buffered Tyrode's medium containing sodium lactate and 3 mg mL−1 bovine serum albumin, 10% fetal calf serum, 100 IU mL−1 penicillin G, 100 μg mL−1 streptomycin and 25 μg mL−1 amphotercin B) or initially into HM containing 0.2 m sucrose for 5 or 10 min. The survival rate of all embryos immediately post-thawing, as judged by the morphological appearance of the embryos, was high (91%), but was greatly reduced after 2 h culture (59%). Ninety-two embryos were transferred to recipient camels resulting in 18 viable fetuses (1 min ethanediol exposure, n = 1/15; 5 min ethanediol exposure, n = 3/34; 10 min ethanediol exposure, n = 14/43). Of the embryos rehydrated directly in HM, six of 65 resulted in viable fetuses and those rehydrated initially in 0.2 m sucrose for 5 or 10 min resulted in nine of 47 and three of 46 fetuses respectively. From these experiments, we conclude that camel embryos can be cryopreserved using ethanediol as a cryoprotectant when the embryos are cooled slowly (to 33°C) before being plunged into liquid nitrogen for storage.


2011 ◽  
Vol 23 (1) ◽  
pp. 240
Author(s):  
A. C. Carstea ◽  
Z. Polgar ◽  
L. Kovacs ◽  
A. Dinnyes

The progress of molecular genetics generated thousands of new transgenic strains of mice which also requires their economic and safe maintenance in the form of genetic banks. Sperm freezing would be one of the easiest options; however, cryosensitivity of sperm in mice strains is prone to variation. In this study, we examined the efficiency of laser-assisted zona drilling in vitro fertilization (ZD-IVF) v. intracytoplasmic sperm injection (ICSI) for attempting to recover two transgenic (UBI-GFP/BL6 and B6;129P2- Hvcn1) and one mutant (C57BL/6J-Tyrc-2J) lines. The sperm was frozen with 18% raffinose and 3% skim milk (Nakagata 2000 Mamm Genome 11, 572–576). Data of the replicates was analysed by chi-square method. The motility rates after thawing of cryopreserved sperm were 10% for UBI-GFP/BL6, 30% C57BL/6J-Tyrc-2J and 50% for B6;129P2-Hvcn1 strains. Regular IVF attempts in the UBI-GFP/BL6 and the mutant strain resulted in very few embryos and no pups (data not shown). Following ZD-IVF, the 2-cell stage rates were 7/60 (12%) for UBI-GFP/BL6, 18/60 (30%) for C57BL/6J-Tyrc-2J, and 34/60 (56%) for B6;129P2- Hvcn1. After ICSI, 66–74% of the oocytes survived the procedure and their development to 2-cells stage were 12/20 (60%) (UBI-GFP/BL6), 25/39 (64%) (C57BL/6J-Tyrc-2J) and 26/37 (70%) (B6;129P2-Hvcn1). The number of 2-cell stage embryos produced by ICSI was significantly (P < 0.05) increased compared with those produced following ZD-IVF in case of UBI-GFP/BL6 and C57BL/6J-Tyrc-2J strains. The 2-cell stage embryos were transferred into recipients and the newborn rates from ZD-IVF v. ICSI embryos were 0% v. 17% (UBI-GFP/BL6), 28% v. 36% (C57BL/6J-Tyrc-2J) and 12% v. 12% (B6;129P2- Hvcn1), respectively; none of them were significantly different. In conclusion, when using cryopreserved sperm, the post-thaw motility is an important indicator for the selection of the rederivation method of cryopreserved transgenic mouse strains; while ZD-IVF, an easier method to perform, is suitable for the higher motility samples, ICSI could be strongly recommended for those showing low motility. This work was financed by EU FP6: CLONET (MRTN-CT-2006-035468), TEAMOHOLIC (MEXT-CT-2003-509582); EU FP7: RESOLVE (FP7-HEALTH-F4-2008-202047), RabPStem (PERG07-GA-2010-268422), and NKFP_07_1-ES2HEART-HU (OM-00202-2007).


Sign in / Sign up

Export Citation Format

Share Document