105 BOVINE DEMI-BLASTOCYSTS ARE ABLE TO EXPAND TO A SIZE SIMILAR TO INTACT BLASTOCYSTS UNTIL AT LEAST DAY 13 OF IN VITRO CULTURE

2016 ◽  
Vol 28 (2) ◽  
pp. 182
Author(s):  
A. E. Velasquez ◽  
J. Manríquez ◽  
D. Veraguas ◽  
F. O. Castro ◽  
L. I. Rodríguez-Alvarez

Embryo bisection has been used to produce identical twins, to increase the pregnancy rate per embryo, and for preimplantation diagnosis. However, the invasive nature of splitting might affect development decreasing embryo survival. In general, after bisection or biopsy, embryos are transferred to surrogate mothers and their competence evaluated in terms of implantation and pregnancy maintenance. However, this makes it difficult to evaluate the immediate response of each embryo to bisection. Our aim was to evaluate embryo growth during the 5 days following bisection by using an extended in vitro culture system. We postulated that bisected blastocysts are able to counteract the injury and expand in size until Day 13 of in vitro culture. Two experiments were performed. First, two different culture systems were evaluated to determine the best to support embryo development from Day 9 to 13. One system consisted of conventional culture in plastic (CCP), while the other one included co-culture with endometrial cells derived from a cycling cow (CC). Both used SOFaa supplemented with 3 mg mL–1 of fatty acid-free BSA and 2% FBS in 4-well dishes. Twenty-six nonbisected in vitro-derived blastocysts were cultured. Embryo size and survival were recorded daily. All living embryos were measured with Micrometrics™ SE Premium software and statistical analyses were performed using the Kruskal–Wallis test. From Day 9 to 11, blastocysts cultured in the CCP system had smaller diameters than those cultured in CC [Day 9: CC 358 µm, CCP 277 µm (P = 0.04); Day 10: CC 456 µm, CCP 340 µm (P = 0.005); and Day 11: CC 535 µm, CCP 408 µm (P = 0.02)]. However, on Day 12 and 13, no difference was observed in embryo diameters [(Day 12: CC 560 µm, CCP 411 µm (P = 0.1) and Day 13: CC 470 µm, CCP 474 µm (P = 0.9)]. Additionally, embryos with diameters less than 200 µm on Day 9 did not develop further independent of the culture system (P < 0.001). Thus, in the second experiment, to determine embryo size after bisection, only well-expanded grade 1 blastocysts >200 µm were used in the conventional CCP system. Twenty four Day 8 bisected (B) and nonbisected (C) blastocysts were cultured from Day 9 until 13. In the bisected group, one-half was kept for further gene expression analysis. Significant differences were observed in embryo diameter between both groups on Day 9 and 10 of culture [Day 9: B 321 µm, C 277 µm (P = 0.05); D10: B 436 µm, C 340 µm (P = 0.01)]. However, on Days 11, 12, and 13, no differences in diameter were observed (Day 11: B 411 µm, C 408 µm (P = 0.8); Day 12: B 394 µm, C 411 µm (P = 0.5); Day 13: B 316 µm, C 474 µm (P = 0.3)]. In conclusion, we show that bovine embryos are capable of developing in vitro until Day 13, and embryo diameter on Day 9 impacts on the subsequent in vitro survival of nonsplit embryos, regardless of culture system. Finally, on Day 11 of culture, the split embryos were able to overcome the injury caused by the bisection procedure and expanded in size similar to controls, until at least Day 13 of culture.

2014 ◽  
Vol 29 (4) ◽  
pp. 457-469 ◽  
Author(s):  
Federica Riva ◽  
Claudia Omes ◽  
Roberto Bassani ◽  
Rossella E Nappi ◽  
Giuliano Mazzini ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
F Du ◽  
R Li ◽  
Q Zhang ◽  
W Wang

Abstract Study question what is the source, prevalence, and influence of microbial contamination on in vitro fertilization (IVF) and embryo transfer (ET) cycles? Summary answer Microbial contamination mainly occurs on Day 2, most caused by Escherichia coli carried with semen. ICSI could prevent contamination effectively and get good clinical outcomes. What is known already Microbial contamination occurs in IVF-ET system occasionally, which is hard to stop happening. The IVF culture system and laboratory environment, the patients’ follicular fluid and semen are not absolutely sterile, while the antibiotics in culture medium isn’t effective for all microbe types, and the artificial operations may bring in microbes. Generally, microbial contamination leads to degradation of embryos, reduction the number of embryos available, and infection of female reproductive tract, which would increase the cost of patients’ time, money, and bring psychological damages. A better understanding of embryo contamination in IVF culture system is of added value. Study design, size, duration A total of 29583 IVF-ET cycles were enrolled in this prospective observational study, from January 2010 to December 2020, included 70 microbial contamination cycles discovered in Day1-Day3 (D1-D3) of in vitro culture. Follicular fluid and semen saved on oocyte retrieval day, and culture medium contaminated were examined and identified for microorganisms at each contamination cycle. Participants/materials, setting, methods Compared the contamination rate of different insemination methods (IVF/ICSI/IVF+ICSI), different in vitro culture days (D1-D3), and different samples examination (follicular fluid, semen, culture medium) respectively, identified the source of microorganism types, compared the IVF culture outcomes and clinical outcomes between total contamination group (TC group, 42 cases) and partial contamination group (PC group, 28 cases). Main results and the role of chance A total of 70 microbial contamination cases occurred in 29583 oocyte retrieving cycles (0.24%), and it was observed only in IVF embryos but never in ICSI (Intracytoplasmic sperm injection) embryos. 38 contamination cases occurred on D2 with a highest ratio (54.3%) compared to D1 (32.9%) and D3(12.9%); Compared with follicular fluid, semen was the main cause inducing contamination from D1 to D3, and Escherichia coli in semen and culture medium, Enterococcus faecalis in follicular fluid proved to be the most common sources. Compared with TC group, the PC group showed a lower rate of No-available embryos (21.4% vs 81.0%) and a higher rate of blastocyst formation (41.2% vs 28.6%), In addition, the clinical pregnancy rate of PC group was higher than that of TC group in both fresh and frozen-thawed embryo transfer cycles (31.3% vs 16.7%, 38.5% vs 0.0%). Limitations, reasons for caution Further study is still necessary to better understand the sources that induce microbial contamination embryos, and more efficient methods are required to remove the microbes on these contaminated embryos so as better develop and manage a sterile micro-environment for successful embryo growth. Wider implications of the findings: The differential embryonic microbe types associated to different IVF culture and clinical outcomes in patients undergoing IVF-ET might have profound implications for understanding the microbial sources and making a better management of IVF culture system. Trial registration number Not applicable


2016 ◽  
Vol 65 (5) ◽  
pp. 516-519 ◽  
Author(s):  
Tessa Carrau ◽  
Liliana Machado Ribeiro Silva ◽  
David Pérez ◽  
Rocio Ruiz de Ybáñez ◽  
Anja Taubert ◽  
...  

3 Biotech ◽  
2020 ◽  
Vol 10 (3) ◽  
Author(s):  
Jing Yang ◽  
Xiaozeng Yang ◽  
Bin Li ◽  
Xiayang Lu ◽  
Jiefang Kang ◽  
...  

2001 ◽  
Vol 26 (1) ◽  
pp. 81-91 ◽  
Author(s):  
W.W. Thatcher ◽  
M. Binelli ◽  
D. Arnold ◽  
R. Mattos ◽  
L. Badinga ◽  
...  

AbstractA series of in vitro and in vivo experiments were conducted to characterise the dialogue between embryo and maternal units relative to the mechanisms controlling embryo survival in dairy cattle. Endometrial explants from pregnant cows had an attenuated PGF2α secretory response following treatment with melittin (stimulator of PLA2) and phorbol 12, 13 dibutyrate (PDBu). Thus previous exposure to the conceptus appears to regulate the endometrial synthetic pathway at a point coincident with or distal to PLA2 as well as inhibit PKC or PKC mediated events. Endometrial explants collected from cows receiving intrauterine infusions of rblFN-τ had a reduced secretory response following stimulation with PDBu indicating attenuation in PKC activity. Based upon tyrosine-phosphorylation of STAT-proteins and their translocation to the nucleus after treatment with rbIFN-τ, the JAK-STAT pathway is functional in immortalised bovine endometrial cells (BEND cells). Bend cells, exposed to rblFN-τ, reduced PDBu induction of PGF2α secretion and also decreased protein expression of Cox-2 and PLA. RblFN-τ clearly reduced PKC mediated events leading to an antiluteolytic response in endometrial cells. Feeding diets containing 2.6, 5.2 and 7.8% Menhaden fish meal to lactating dairy cows reduced uterine secretion of PGF2α following sequential injections of oestradiol and oxytocin. Thus antiluteolytic effects in early pregnancy may be amplified by feeding by-pass fats. Pregnancy rate to a timed insemination at first service post-partum is increased in association with injection of bST(500 mg; sc) given at insemination. Furthermore injection of bST at time of insemination in superovulated donor cows increased the number of blastocysts and reduced number of unfertilised embryos. Prospects of integrating novel strategies to improve embryo development and survival into reproductive management systems appear to be attainable in high producing dairy cows.


Blood ◽  
1999 ◽  
Vol 94 (5) ◽  
pp. 1623-1636 ◽  
Author(s):  
Chu-Chih Shih ◽  
Mickey C.-T. Hu ◽  
Jun Hu ◽  
Jeffrey Medeiros ◽  
Stephen J. Forman

Abstract We have developed a stromal-based in vitro culture system that facilitates ex vivo expansion of transplantable CD34+thy-1+ cells using long-term hematopoietic reconstitution in severe combined immunodeficient-human (SCID-hu) mice as an in vivo assay for transplantable human hematopoietic stem cells (HSCs). The addition of leukemia inhibitory factor (LIF) to purified CD34+ thy-1+ cells on AC6.21 stroma, a murine bone marrow–derived stromal cell line, caused expansion of cells with CD34+ thy-1+ phenotype. Addition of other cytokines, including interleukin-3 (IL-3), IL-6, granulocyte-macrophage colony-stimulating factor, and stem cell factor, to LIF in the cultures caused a 150-fold expansion of cells retaining the CD34+ thy-1+ phenotype. The ex vivo–expanded CD34+ thy-1+ cells gave rise to multilineage differentiation, including myeloid, T, and B cells, when transplanted into SCID-hu mice. Both murine LIF (cannot bind to human LIF receptor) and human LIF caused expansion of human CD34+ thy-1+ cells in vitro, suggesting action through the murine stroma. Furthermore, another human HSC candidate, CD34+ CD38− cells, shows a similar pattern of proliferative response. This suggests thatex vivo expansion of transplantable human stem cells under this in vitro culture system is a general phenomenon and not just specific for CD34+ thy-1+ cells.


2013 ◽  
Vol 25 (1) ◽  
pp. 214
Author(s):  
B. C. S. Leão ◽  
N. A. S. Rocha ◽  
M. F. Accorsi ◽  
É. Nogueira ◽  
G. Z. Mingoti

The production of reactive oxygen species (ROS), such as superoxide anion (O2–), hydroxyl radical (OH–), hydrogen peroxide (H2O2) and organic peroxide, is a normal process that occur in the cellular mitochondrial respiratory chain (Morado et al. 2009 Reprod. Fert. Dev. 21, 608–614). Supplementation with antioxidants during in vitro culture (IVC) appears to increase the resistance of bovine embryos to the oxidative stress, and consequently improve embryo development and cryotolerance (Rocha et al. 2011 Reprod. Fert. Dev. 23 157–158). This study was conducted to evaluate the effects of period of supplementation with intra (cysteine, CIST) or extracellular (catalase, CAT) antioxidants during IVC on embryo development and cryotolerance. Cumulus–oocyte complexes (n = 1132) were maturated for 24 h in B199 medium, at 38.5°C and 5% CO2 in air. After fertilization (Day 0), zygotes were IVC for 7 days in SOF medium (0.5% BSA + 2.5% FCS) in 7% O2, 5% CO2 e 88% N2 atmosphere, at 38.5°C. The antioxidant supplementation was performed during all of the culture period (from Day 1 to Day 7) or during the first 72 h (from Day 1 to Day 3), with 0.6 mM CIST, 100 UI CAT or without antioxidants (CONTR). The cleavage and blastocyst rates were evaluated, respectively, at 72 and 168 h post-insemination, when expanded blastocysts grade I were vitrified (n = 91) by Vitri-Ingá® protocol (Ingámed®, Maringá, PR, Brazil). Then, they were thawed and cultured for 24 h to evaluate re-expansion rates. The differences between groups were analyzed by ANOVA followed by Tukey’s test, and re-expansion rates by chi-square test (P ≤ 0.05). The cleavage and blastocyst rates were, respectively, 83.52 ± 4.52a/36.19 ± 3.21a (CONTR), 79.16 ± 4.52a/38.08 ± 3.21a (CIST Day 3), 77.74 ± 4.52a/42.09 ± 3.21a (CAT Day 3), 73.57 ± 4.05a/11.15 ± 2.87b (CIST Day 7), 71.83 ± 4.05a/15.07 ± 2.87b (CAT Day 7). The embryo re-expansion rates were 90.00%a (CONTR), 93.33%a (CIST Day 3), 75.00%a (CIST Day 7), 63.64%a (CAT Day 3) and 75.00%a (CAT Day 7). Supplementation with antioxidants for 7 days of IVC impaired embryo development, compared with addition up to Day 3 (P ≤ 0.05). However, it did not affect in vitro embryo cryotolerance (P ≥ 0.05). Supplementation with antioxidants throughout all the IVC significantly impaired blastocyst rate, probably by exerting a toxic effect leading to an arrest of embryonic development. It is believed that prolonged culture in the presence of antioxidants results in excessive reduction of ROS leading to an imbalance of the cellular redox status. It is known that ROS, particularly H2O2, act on signaling pathways involved in the cellular proliferation and differentiation, in gene expression and metabolism during embryo development. Supplementation with antioxidants up to Day 3 did not differ from CONTR, probably due to low O2 tension, and the presence of antioxidants in FBS and BSA. In conclusion, supplementation with cysteine and catalase during all of the culture period impaired embryo development, however this reduction did not affect embryo survival after vitrification. Financial support was provided by FAPESP (#2011/18257-2). The authors acknowledge Ingámed, Alta Genetics Brazil.


Sign in / Sign up

Export Citation Format

Share Document