89 EFFECT OF MEDIA, METABOLIC REGULATORS, AND STAGE OF DEVELOPMENT ON LIPID CONTENT AND MITOCHONDRIAL POLARITY OF IN VITRO-PRODUCED HOLSTEIN EMBRYOS

2016 ◽  
Vol 28 (2) ◽  
pp. 174
Author(s):  
M. A. Roberts ◽  
L. F. Campos-Chillon ◽  
M. Barceló-Fimbres ◽  
J. L. Altermatt

Current bovine embryo culture methods result in accumulation of lipids and reactive oxygen species, possibly due to sub-optimal metabolic regulation. These effects decrease the cryopreservation survival and implantation potential of in vitro-produced (IVP) embryos. Forskolin has been shown to decrease lipid accumulation, and vitamin K2 (Vit K2) is thought to decrease oxidative stress from in vitro conditions. The aims of this study were (1) to assess lipid content of embryos cultured with or without forskolin and Vit K2 in both continuous and sequential SOF-based medium, and (2) to examine individual and combined effects of forskolin and Vit K2 on mitochondrial polarity. For Experiment 1, a 2 × 2 × 2 factorial design was used to compare culture systems (continuous v. 3-step sequential), additives (no additive v. Vit K2 (0.5 mM at Day 3) plus forskolin (10 µM at Day 5), and blastocyst stage [6 (early) v. 7 (late)] on overall lipid content. For Experiment 2, mitochondrial polarity of stage 7 blastocysts was analysed from the following groups: no additive, Vit K2 (0.5 mM at Day 3), forskolin (10 µM at Day 5), and Vit K2 plus forskolin. IVP embryos (n = 199, Experiment 1; n = 45, Experiment 2) were produced by standard procedures and cultured at 38.5°C in 5% O2, 5% CO2, and 90% N2. For Experiment 1, embryos were stained with 1 μg mL–1 Nile Red, and two images per embryo were taken along the equatorial plane at 40× magnification. For Experiment 2, embryos were stained with 300 nM MitoTracker Red CMX-Rosamine, and 10 images per embryo were acquired by confocal microscopy with a 5-μm step size at 40× magnification. For both experiments, fluorescence intensity (FI) of each image was measured by Image PRO software with embryo controlled for and background fluorescence corrected. Data (Table 1) were analysed by ANOVA and means were compared by Tukey’s HSD. In Experiment 1, embryos cultured with forskolin and Vit K2 showed decreased lipid content in both the early and late stage (P < 0.05), with no effect from culture system (P > 0.05). In Experiment 2, forskolin and Vit K2 individually increased mitochondrial polarity (P < 0.05), but had no combined effect (P > 0.05). In conclusion, these data suggest that while a combination of forskolin and Vit K2 as media additives reduces lipid accumulation, the interaction between these metabolic regulators may negate their individual effects on mitochondrial polarity. Table 1.Fluorescence intensity of Nile Red and MitoTracker Red dyes between treatment groups

2016 ◽  
Vol 28 (2) ◽  
pp. 174
Author(s):  
K. Rhodes-Long ◽  
L. F. Campos-Chillon ◽  
M. Barceló-Fimbres ◽  
J. L. Altermatt

Jersey embryos have been suggested to have higher lipid content and lower tolerance to cryopreservation. In addition, in vitro-produced (IVP) bovine embryos have darker cytoplasm as a consequence of higher lipid accumulation than in vivo-derived embryos, associated with impaired embryo quality and reduced cryotolerance. Forskolin is an adenylate cyclase activator that regulates cAMP levels in cells and has been shown to induce lipolysis in IVP embryos. We hypothesised that the lipid content of in vivo-produced and IVP Jersey embryos is higher than respective Holstein embryos and that forskolin would reduce lipid content of IVP embryos. The objectives of this experiment were (1) to analyse lipid content of in vivo and IVP Jersey and Holstein cattle embryos and (2) to evaluate the effect of forskolin added to IVP culture media. The factorial experimental design used two breeds (Holstein and Jersey) and three embryo production methods (in vivo, IVP, and IVP + forskolin). IVP embryos (n = 27 blastocysts) were collected from super-stimulated donors by routine procedures 7.5 days after AI. IVP embryos (n = 259 blastocysts) were produced by standard procedures; briefly, oocytes were aspirated from 2- to 8-mm follicles from slaughterhouse ovaries and matured for 24 h in SMM medium (BoviPro, MOFA Global, Verona, WI, USA). Matured oocytes were fertilized using semen from two different bulls for each breed, and embryos were cultured in BBH7 medium (BoviPro, MOFA Global) alone or with the addition of forskolin (10 µM) at Day 5 of culture at 38.5°C in 5% O2, 5% CO2, and 90% N2. The lipid content of embryos was quantified by staining Day 7 blastocysts with 1 μg mL–1 Nile red dye (580–596 nm), after which a digital photograph of the equatorial part of the embryo was taken at 40×, and fluorescence intensity (FI) was measured with Image Pro software. Data (Table 1) were analysed by ANOVA, and means were compared using Tukey’s HSD. Jersey and Holstein IVP embryos had higher lipid content than Holstein in vivo-produced embryos (P < 0.05), but were not different than Jersey in vivo-derived embryos (P > 0.1). Forskolin lowered the lipid content (P < 0.05) of both IVP Jersey and Holstein embryos and was not different (P > 0.1) than in vivo-produced embryos. Addition of forskolin to embryo culture media has the potential to lower embryo lipid accumulation and possibly improve embryo viability and cryotolerance of IVP embryos. Further studies including cryopreservation and transfer of IVP + forskolin embryos to recipients are necessary to corroborate the findings of the present study. Table 1.Fluorescence intensity of in vivo-produced and IVP Jersey and Holstein embryos


2009 ◽  
Vol 21 (1) ◽  
pp. 154 ◽  
Author(s):  
M. Barcelo-Fimbres ◽  
G. E. Seidel

The objective of this experiment was to evaluate lipid accumulation and embryonic development of bovine morulae treated with different chemicals. A total of 2619 slaughterhouse oocytes from heifers and mature cows were matured in CDM medium (similar to SOF) plus 0.5% fatty acid-free BSA and hormones (M-CDM) for 23 h at 38.5°C in 5% CO2 in air. Frozen–thawed sperm were centrifuged through a Percoll gradient and co-cultured with matured oocytes for 18 h in F-CDM (CDM+heparin). Zygotes were cultured at 38.5°C in 5% CO2/5% O2/90% N2 in CDM-1 with nonessential amino acids, 10 μm EDTA, 0.5% fatty acid free BSA, and 0.5 mm fructose. After 60 h, resulting 8-cell embryos were cultured 120 h in CDM-2 (CDM-1+essential amino acids and 2 mm fructose). A factorial design was used with 7 treatments, 2 ovary sources (cows v. heifers), and 3 bulls (A, B and C) replicated twice for each bull (6 replicates). At Day 2.5 embryo cleavage and 8-cell rates were evaluated, and on Day 6 a total of 755 morulae were randomly assigned to the 7 treatments (control, 2 and 8 mm caffeine, 1 and 4 μm epinephrine, and 10 and 40 μm forskolin). To quantify lipid accumulation, Day 7 blastocysts were fixed and stained with 1 μg mL–1 Nile red dye, after which a digital photograph of the equatorial part of the embryo (including the inner cell mass) was taken at 200×, and fluorescence intensity was measured with Image Pro software from 0 to 255 shades for each pixel (0 = no lipids; 255 = greatest lipid accumulation), as previously reported (Biol. Reprod. 2007 (Suppl. 1), 87–88). Data were analyzed by ANOVA. No differences in cleavage rates (75 v. 68 ± 3.6%) or eight cell rates (61 ± v. 57 ± 2.8%) were found for heifer v. cow oocytes (P > 0.1); however, blastocyst rates per oocyte and per 8-cell embryo were greater for cows than heifers (20 v. 10 ± 2.1%, and 68 v. 35 ± 3.8%, respectively; P < 0.05). Treatments: 2 and 8 mm caffeine produced fewer blastocysts per morula than 1 and 4 μm epinephrine, 10 and 40 μm forskolin and the control (39, 5 v. 54, 49, 48, 54 and 52 ± 5.8%; respectively) (P < 0.01). More lipid content was found in whole embryos and trophoblast of heifer-derived than cow blastocysts (P < 0.05), and forskolin resulted in less lipid content than control, caffeine- and epinephrine-treated morulae in whole embryos, embryonic mass and trophoblasts (P < 0.05; Table 1). In conclusion, mature cows were a better source of oocytes than feedlot heifers for embryonic development. High doses of caffeine were detrimental to embryos, and the addition of the lypolitic agent forskolin reduced lipid content relative to control, caffeine and epinephrine-treated embryos. Table 1.Main effect treatment means of lipid content (arbitrary fluorescence units)


2017 ◽  
Vol 29 (1) ◽  
pp. 129 ◽  
Author(s):  
C. M. Owen ◽  
M. Barceló-Fimbres ◽  
J. L. Altermatt ◽  
L. F. Campos-Chillon

In vitro-produced (IVP) embryos experience poor cryotolerance due to metabolic changes during in vitro culture causing increased lipid accumulation and apoptosis post-thaw. We hypothesised that embryos cultured in a novel SOF for conventional freezing media (SCF1), dehydrated, and allowed longer equilibration before conventional slow freezing would increase post-thaw survival and decrease apoptosis. IVP embryos were produced in 9 replicates by oocytes (n = 3172) aspirated from abattoir ovaries, matured for 23 h, fertilized with semen from 1 of 4 bulls, and cultured in conventional SOF media or SCF1 in 38.5°C in 5% O2, 5% CO2, and 90% N2. Stage 7 blastocysts were stained with 1 µg mL−1 Nile Red for lipid content and 300 nM Mitotracker Red CMX-Rosamine for mitochondrial polarity. Remaining blastocysts were slow-frozen by 1 of 4 protocols: 2-min dehydration in 0 or 0.6 M sucrose in holding media before equilibration (10 or 20 min) in conventional freezing media (1.5 M ethylene glycol and 0.5 M sucrose in holding media). Embryos were thawed and assessed for re-expansion at 48 h and surviving embryos were stained with 4′6-diamidino-2-phenylindole (DAPI) and a TUNEL assay to determine apoptosis. Ten images per embryo were acquired by confocal microscopy using a 5-µM step size at 40× magnification. Fluorescence of Nile Red and Mitotracker was measured by IMAGE PRO software, and cells stained for TUNEL were analysed by a cell counter plug-in. Blastocyst rate, Nile Red, and Mitotracker data (Table 1) were analysed by one-way ANOVA and means separated by Tukey’s HSD. Post-thaw survival and apoptotic levels (Table 1) were analysed as a factorial 2 (SOF and SCF1) × 2 (0 and 0.6 M sucrose) × 2 (10 and 20 min), and means separated by Tukey’s HSD. No interactions occurred between factors so they were dropped from the model and only main effects are shown. Results indicate that SCF1 increased blastocyst rate, mitochondrial polarity, and post-thaw survival and decreased lipid content and post-thaw apoptosis (P < 0.01). A 20-min equilibration time decreased apoptosis (P < 0.01) and tended to increase post-thaw survival (P < 0.1), suggesting that cryotolerance is improved in embryos cultured in SCF1 and equilibrated for 20 min. Table 1.Effect of media on development, lipid content and mitochondrial polarity (top) and of media, equilibration and dehydration on post-thaw survival and apoptosis (bottom)


2019 ◽  
Vol 31 (1) ◽  
pp. 191
Author(s):  
L. H. Aguiar ◽  
A. C. Denicol

Lipid accumulation decreases cryopreservation survival of in vitro-produced embryos, reducing pregnancy rate after embryo transfer. Fatty acid binding protein 3 (FABP3) plays a role in lipid transport from cumulus cells to the oocyte during maturation. Blocking this transport could reduce lipid content in the oocyte and embryo and increase cryopreservation survival. This preliminary study aimed to test the effect of α-truxillic acid (FABP-I), a chemical molecule that inhibits FABP3/5 action by receptor competition, on lipid content of matured oocytes and blastocysts after culture. Slaughterhouse-derived cumulus-oocyte complexes were matured with 0 (control), 10, 50, 100 and 500nM FABP-I for 22h. In Experiment 1, 346 oocytes in 3 replicates were fixed following maturation and stained with 1μg mL−1 Nile Red to evaluate total lipid content; maturation was assessed by nuclear staining with 10μg mL−1 Hoechst 33342[ACD1]. In Experiment 2, 876 cumulus-oocyte complexes in 5 replicates were matured for 22h under the same concentrations of FABP-I, then fertilized for 18h and cultured for 7 days. Cleavage and blastocyst development were evaluated on Day 2 and 7, respectively. Blastocysts were fixed at Day 7 and stained with Nile Red. Fluorescence intensity was measured in arbitrary units using ImageJ (NIH), and data was analysed using GLM procedure of SAS (SAS Institute Inc., Cary, NC, USA). In Experiment 1, maturation rate did not differ among treatments (70.2±8.7; P=0.7). There were significant effects of treatment, replicate and interaction of treatment by replicate on fluorescence intensity. Compared with control (23.6±0.6), intensity was lowest in oocytes matured with 500nM FABP-I (21.2±0.6; P&lt;0.01) and highest in the 10nM group (26.5±0.6; P&lt;0.01). Staining intensity tended to decrease in the 100nM group (22.1±0.6; P=0.09) and was not different in the 50nM group (24.0±0.7; P=0.6). In Experiment 2, cleavage rate (75.8±2.9; P=0.3) did not differ and blastocyst development tended to be different among treatments (P=0.06). Compared with the control (33.3±4.8), the 500nM group had lower development (17.0±4.8; P&lt;0.03); 10 and 50nM groups had numerically lower (24.7 and 24.0±4.8) and the 100nM group had the highest development rate (37.3±4.8), although either was significant. Treatment tended to affect fluorescence intensity of blastocysts (P=0.07; n=209), and there were significant effects of replicate and interaction between replicate and treatment. Compared with the control (11.7±1.3), fluorescence intensity was lower in the 50nM group (6.8±1.3; P&lt;0.01), whereas 10nM had a tendency for lower intensity (8.3±1.2; P=0.06). Groups 100 and 500nM were not significantly different from controls (9.4±0.9 and 10.7±1.5, respectively). In conclusion, addition of FABP-I up to 500nM did not affect maturation or embryo cleavage but altered blastocyst development. Exposure to 50nM reduced staining intensity in blastocysts without significant decrease in development, whereas 100nM resulted in numerically lower oocyte staining intensity and higher blastocyst development. Future experiments will evaluate cryopreservation survival of embryos treated with FABP-I, and embryo transfer.


2015 ◽  
Vol 27 (1) ◽  
pp. 208
Author(s):  
K. R. L. Schwarz ◽  
P. R. Adona ◽  
R. C. Botigelli ◽  
M. Del Collado ◽  
C. Elias ◽  
...  

Intracellular levels of cyclic adenosine monophosphate modulators (cAMP) and cGMP, in adipocytes, are important for the regulation of the lipolysis rate. The phosphodiesterases (PDE) control cGMP and cAMP levels by degradation. Different PDE isoforms are expressed in bovine oocytes and cumulus cells. Previously, we found that using an inhibitor of PDE5A (sildenafil, SILD) increased cGMP levels in bovine oocytes during in vitro maturation (IVM). In the current study we investigated if inhibition of PDE5A during maturation reduces the lipid content in IVF embryos. For this, oocytes were cultured for 24 h in maturation medium with 10% FCS and 10–7 M SILD (treatment I), 10% FCS (treatment II) and 0.4% BSA (control; N ± 160 COC/groups submit to IVF). After COC were in vitro fertilized, cleavage (Day 4) and blastocyst rates (Day 7) were measured. Blastocysts were stained with Nile Red (1 μg mL–1) for lipid content quantification, by mean fluorescence intensity per μm2, measured in the ImageJ program (fluorescence intensity, f.i.). Four replicates were transformed to log10 and subjected to statistical analysis using the SAS system (SAS Institute Inc., Cary, NC, USA) by ANOVA followed by Tukey test with a significance level of 5%. No difference in cleavage (Day 4) and blastocyst (Day 7) rates were observed in all groups (82 and 41.9%, respectively), showing that presence of FCS, SILD, or both in IVM medium did not affect embryo development. Treatment I had higher lipid content (40.35 f.i.) than treatment II (31.12 f.i.), which in turn was also superior to control (22.31 f.i.). According to the results, the presence of FCS in IVM media generates embryos with higher lipid content, and association of FCS and SIL further increased lipid content. Although inhibition of PDE5 increases cGMP levels and leads to higher lipolysis, such an effect was not observed when SIL was used as the PDE5 inhibitor. Reasons for such findings are still unclear, but a possibility would be the activation of a negative feedback mechanism by the increased cGMP generated by SIL, because this nucleotide activates PKG, which in turn inhibits cGMP synthesis by guanylate cyclase. During development the lower cGMP levels could reduce lipolysis, resulting in increased lipid accumulation in embryos. Further studies are needed to address this possibility.


Zygote ◽  
2015 ◽  
Vol 24 (4) ◽  
pp. 485-494 ◽  
Author(s):  
Mônica F. Accorsi ◽  
Beatriz Caetano da Silva Leão ◽  
Nathália Alves de Souza Rocha-Frigoni ◽  
Silvia Helena Venturoli Perri ◽  
Gisele Zoccal Mingoti

SummaryWe examined whether culturing embryos with linoleic acid (LA) in semi-defined medium reduces lipid accumulation and improves cryosurvival after vitrification. Embryos were cultured with LA (100 μM) and a semi-defined medium was used during in vitro culture (IVC), in which the fetal calf serum was substituted by bovine serum albumin (BSA). There was a reduction (P < 0.05) in the embryonic development rate (Control: 25.8% versus LA: 18.5%), but the proposed system was effective in promoting the decrease (P = 0.0130) in the intracellular lipid content (Control: 27.3 ± 0.7 versus LA: 24.6 ± 0.7 arbitrary fluorescence units of embryos stained with the fluorescent dye Nile Red), consequently increasing (P = 0.0490) the embryo survival after 24h of culture post-warming (Control: 50.0% versus LA: 71.7%). The results question the criteria used to evaluate the efficiency of an in vitro production system specifically with relation to the maximum number of blastocysts produced and suggest that might be more appropriate to improve the desired characteristics of embryos generated in accordance with the specific purpose of in vitro embryo production, commercial or scientific. In conclusion, supplying LA to serum-free culture medium was found to adversely affect the rates of embryo development to the blastocyst stage, but significantly reduced embryo lipid accumulation and improved cryopreservation survival.


1990 ◽  
Vol 259 (6) ◽  
pp. G998-G1009
Author(s):  
M. J. Rutten ◽  
C. D. Moore ◽  
R. Delcore ◽  
L. Y. Cheung

We investigated the effects of feeding on lipid accumulation and transepithelial transport using in vitro Necturus gastric antral mucosae. Antra from fed Necturi were examined for lipid accumulation using light, fluorescence, histochemical, and electron microscopy. Ussing chambers were used for measurement of potential difference (PD), transepithelial resistance (Rt), short-circuit current (Isc), and unidirectional fluxes of 22Na+ and [3H]mannitol. Light microscopy of antra from 2-day postfed animals showed many intracellular lipid granules in surface mucous epithelial cells. These granules could be distinguished from other intracellular organelles by their high affinity for osmium and the lipid fluorescent probe Nile red. Glycoprotein cytochemical staining showed these granules to be distinct from the epithelial cell mucous granules. Electron microscopy showed the lipid granules to be part of a membranous reticular network. Two-day postfed animals also had a approximately 3.5-fold increase in amiloride-sensitive Isc and PD, a decrease in Rt, and an increased luminal-to-serosal Na+ fluxes. Transepithelial [3H]mannitol fluxes were low and remained unchanged in both fasted and 2-day postfed animals. After 2 days of feeding, the PD and Isc began to decrease followed by a secondary increase in Rt. Feeding Necturi a corn oil diet did not induce the appearance of either cellular lipid or alterations in Isc but produced a transient increase in Rt. Our data show that feeding (goldfish) to Necturi causes an increase in both lipid accumulation and amiloride-sensitive Na+ transport in gastric antral cells.


2006 ◽  
Vol 18 (2) ◽  
pp. 188
Author(s):  
F. George ◽  
C. Daniaux ◽  
G. Genicot ◽  
F. Focant ◽  
B. Verhaeghe ◽  
...  

In vitro-produced (IVP) bovine blastocysts are known to be more sensitive to cryopreservation than their in vivo counterparts. Removing serum from the culture medium decreases sanitary risk and could improve embryo resistance to cryopreservation by preventing the accumulation of intracellular lipids. Our objectives were to evaluate the lipid content, resistance to cryopreservation, and sex ratio of IVP embryos cultured in a serum-free system. Oocytes from slaughterhouse ovaries were matured in a serum-free enriched medium (Donnay et al. 2004 Reprod. Fertil. Dev. 16, 274) and cultured in 5% O2 in modified SOF supplemented with 5% FCS (FCS) or with insulin-transferrin-selenium (ITS) and 0.1 mg/mL polyvinylpyrrolidone (PVP) (ITS-PVP) or 4 mg/mL BSA (ITS-BSA) (Daniaux et al. 2005 Reprod. Fertil. Dev. 17, 217). Day 5 morulae were stained with the fluorescent dye Nile Red in order to evaluate their lipid content (Genicot et al. 2005 Theriogenology 63, 1181). Day 7 blastocysts (diameter ≥160 µm) were selected, classified according to their size, and frozen in HEPES-SOF containing 1.5 M ethylene glycol, 0.1 M sucrose, and 1.8 mg/mL wheat peptones (George et al. 2002 Reproduction 29, 51). The lipid content was significantly lower in morulae cultured in ITS-BSA compared with the two other media (320 ± 10 arbitrary fluorescence units vs. 383 ± 12 in FCS and 406 ± 10 in ITS-PVP; n = 271; ANOVA2: P < 0.01). After cryopreservation, a higher total hatching rate was found 24 h post-thawing in blastocysts cultured in ITS-BSA and for both serum-free conditions at 48 h (Table 1). In particular, embryos ≤180 µm cultured in FCS were less resistant to cryopreservation than embryos of the same size produced without serum. Expanded blastocysts cultured in ITS-BSA were sexed by PCR (Grisart et al. 1995 Theriogenology 43, 1097) and a higher proportion of male embryos was found (62.7%; n = 51). In conclusion, a complete serum-free system was set up from oocyte maturation to embryo cryopreservation that gave high quality embryos resistant to cryo-preservation. Embryos produced in ITS-BSA presented a lower lipid content, but a shift of the expanded blastocyst sex ratio toward males was observed. Table 1. Hatching rates post-thawing as a function of the blastocyst size and the culture medium


2014 ◽  
Vol 26 (1) ◽  
pp. 155
Author(s):  
L. Baldoceda ◽  
C. Vigneault ◽  
P. Blondin ◽  
C. Robert

Mitochondria play an important role during early mammalian embryo development through their diverse cellular functions, in particular creating balance between production of ATP by electron transport chain and oxidative stress. Embryonic mitochondria are inherited maternally and independently of the nuclear genome. They show limited activity during the early developmental stages before embryonic genome activation. It has been shown that in vitro culture (IVC) has an adverse effect on mitochondrial function in embryos. So far several attempts have been performed to improve and rescue the impaired mitochondria. It has been shown that vitamin K2 (a membrane-bound electron carrier, similar to ubiquinone) was used to rescue mitochondrial dysfunction and resulted in more efficient ATP production in eukaryotic cells (Vos et al. 2012 Science 336, 1306–1310). Therefore, the aim of the present study was to investigate the effects of supplementation of vitamin K2 on mitochondrial activity and blastocyst rate. Cumulus–oocytes complexes (n = 687) recovered from slaughtered animals, were matured and fertilized in vitro according to our standard procedures. After fertilization, zygotes were cultured in SOF media supplemented with 10 mg mL–1 BSA. At 96 h post-fertilization, vitamin K2 was added to the culture media (n = 448 oocytes). On Day 7, treatment embryos were compared with untreated controls (n = 239 oocytes). In vitro culture was carried out at 38.5°C under 5% CO2, 7% O2, and 88% N2. Differences among groups in blastocyst yield were analysed by ANOVA. Mitochondrial activity data was analysed by unpaired 2-tailed t-tests. Results show that the vitamin K2-treated group had a significantly (P < 0.05) higher blastocyst rate (+8.6%), expanded blastocyst rate (+7.8%), as well as better morphological quality compared with the control group. Furthermore, to evaluate mitochondria activity, pools of embryos of each treatment were labelled with a specific dye for active mitochondria (Mitotracker Red). A significantly higher intensity of Mitotracker Red (P < 0.05) was observed in the vitamin K2 treatment versus control group, as measured by fluorescent microscopy. In conclusion, for the first time, our data prove that supplementation of vitamin K2 during IVC of bovine embryos increases blastocyst rates and embryo quality. Future studies will focus on gene expression to identify targets implicated in impaired mitochondrial activity in in vitro bovine embryo production.


Sign in / Sign up

Export Citation Format

Share Document