60 EFFECTS OF CONCANAVALIN A ON THE PROGESTERONE PRODUCTION BY BOVINE STEROIDOGENIC LUTEAL CELLS IN VITRO

2017 ◽  
Vol 29 (1) ◽  
pp. 137
Author(s):  
F. C. Destro ◽  
I. Martin ◽  
F. D. C. Landim-Alvarenga ◽  
R. Sartori Filho ◽  
J. L. Pate ◽  
...  

The corpus luteum is a temporary organ that is responsible for progesterone (P4) secretion and is essential for the establishment and maintenance of pregnancy in cattle. Concanavalin A (CONA) is a lectin that was originally extracted from the Jack bean (Canavalia ensiformis) and that interacts with several kinds of cells, including immune cells and luteal cells. The aim of the present study was to evaluate the effects of CONA on the P4 production by bovine steroidogenic luteal cells (LC) in vitro. Luteal cells were collected during the mid-luteal stage (at 10–12 days following ovulation) and processed in the laboratory. Luteal cells were grown for 7 days in a humid atmosphere with 5% CO2, with or without 10% fetal bovine serum (FBS), and were subjected to the following treatments: control: no treatment; CONA (10 μg mL−1); LH (100 μg mL−1); CONA+LH; LH (100 μg mL−1) + prostaglandin F2α (PGF2α; 10 ng mL−1); CONA+LH+PGF2α. Samples of the culture media were collected on Day 1 and Day 7 for P4 quantification. The cells were counted on Day 7 of culture. Differences between treatments were considered statistically significant at P < 0.05. The P4 concentration in the culture media was numerically greater on Day 1 (558.0 ng mL−1) than on Day 7 (25.4 ng mL−1). The P4 concentration in the culture media was numerically greater for treatments with 10% FBS than for the FBS-free treatments, and the presence of CONA decreased LC P4-secreting capacity. This effect required more than 24 h of exposure to CONA to be fully manifested. On Day 1 of culture, CONA had no effect on P4 production of LC cultured in serum-free medium (P > 0.05).The suppressive action of CONA was more pronounced for cultures without FBS. By Day 7 of culture, the effects of CONA on P4 production were readily apparent. In the absence of serum, CONA had a highly significant (P < 0.01) inhibitory effect on basal progesterone production, as well as in the presence of LH or LH + PGF. In the presence of FBS, there was a tendency for decreased P4 in response to CONA in the LH- and the LH + PGF-treated cells (P = 0.090 and 0.085, respectively). The number of the cells present on Day 7 was not affected by the treatments tested (P > 0.05). More studies are required to better understand the effect of CONA on the P4 production of bovine LC. Financial support from FAPESP is acknowledged: grant no. 2013/00992–3, grant no. 2013/07439–8, and grant no. 2015/01940–2.

1985 ◽  
Vol 108 (2) ◽  
pp. 266-272 ◽  
Author(s):  
Richard F. Laherty ◽  
Daniel Rotten ◽  
May Yamamoto ◽  
Robert B. Jaffe

Abstract. The effects of oestradiol and prolactin (Prl) on progesterone production by dispersed monkey luteal cells were examined. Corpora lutea were recovered from monkeys 5–7 days following ovulation induction during the puerperium. The tissue was dispersed by collagenase and mechanical disruption. The resulting cells were incubated in Dulbecco's modified Eagle's medium, containing the hormones to be tested, for 3 h at 37°C. The medium was removed and assayed for progesterone by RIA. Human luteinizing hormone (hLH) produced a significant, dose-related increase in progesterone secretion that was comparable to that produced by dibutyryl cyclic adenosine monophosphate. Human follicle stimulating hormone (hFSH) had no effect upon progesterone production by the luteal cells. Oestradiol (100–10 000 pg/ml) produced a significant, dose-related decrease in both basal and hLH-stimulated progesterone production. Ovine Prl (oPrl) had neither a stimulatory nor an inhibitory effect upon basal progesterone secretion at doses up to 1000 ng/ml. Further, oPrl did not affect hLH-stimulated progesterone production. We conclude that oestradiol is a potent inhibitor of luteal progesterone secretion in vitro and that Prl does not inhibit progesterone production in the primate corpus luteum under these experimental conditions.


2016 ◽  
Vol 51 (5) ◽  
pp. 848-852
Author(s):  
FC Destro ◽  
I Martin ◽  
FDC Landim-Alvarenga ◽  
JCP Ferreira ◽  
JL Pate

Reproduction ◽  
2015 ◽  
Vol 149 (5) ◽  
pp. 453-464 ◽  
Author(s):  
Soon Ok Kim ◽  
Nune Markosyan ◽  
Gerald J Pepe ◽  
Diane M Duffy

Prostaglandin F2α (PGF2α) has been proposed as a functional luteolysin in primates. However, administration of PGF2α or prostaglandin synthesis inhibitors in vivo both initiate luteolysis. These contradictory findings may reflect changes in PGF2α receptors (PTGFRs) or responsiveness to PGF2α at a critical point during the life span of the corpus luteum. The current study addressed this question using ovarian cells and tissues from female cynomolgus monkeys and luteinizing granulosa cells from healthy women undergoing follicle aspiration. PTGFRs were present in the cytoplasm of monkey granulosa cells, while PTGFRs were localized in the perinuclear region of large, granulosa-derived monkey luteal cells by mid-late luteal phase. A PTGFR agonist decreased progesterone production in luteal cells obtained at mid-late and late luteal phases, but did not decrease progesterone production by granulosa cells or luteal cells from younger corpora lutea. These findings are consistent with a role for perinuclear PTGFRs in functional luteolysis. This concept was explored using human luteinizing granulosa cells maintained in vitro as a model for luteal cell differentiation. In these cells, PTGFRs relocated from the cytoplasm to the perinuclear area in an estrogen- and estrogen receptor-dependent manner. Similar to our findings with monkey luteal cells, human luteinizing granulosa cells with perinuclear PTGFRs responded to a PTGFR agonist with decreased progesterone production. These data support the concept that PTGFR stimulation promotes functional luteolysis only when PTGFRs are located in the perinuclear region. Estrogen receptor-mediated relocation of PTGFRs within luteal cells may be a necessary step in the initiation of luteolysis in primates.


1977 ◽  
Vol 73 (1) ◽  
pp. 71-78 ◽  
Author(s):  
K. M. HENDERSON ◽  
K. P. McNATTY

SUMMARY The newly formed corpus luteum of many species is refractory to the lytic action of prostaglandin F2α (PGF2α). This phenomenon was studied utilizing porcine, bovine and human granulosa-luteal cells in tissue culture. The steroidogenic potential of the granulosa-luteal cells was critical in determining whether PGF2α could inhibit progesterone production. Since the steroidogenic potential of the granulosa-luteal cell is related to the amount of LH bound to the cell, the bound LH may protect the granulosa-luteal cells from the lytic action of PGF2α. Finally, a 'see-saw' type of interaction between LH and PGF2α is postulated to account for the resistance of the newly formed corpus luteum to PGF2α


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 493
Author(s):  
 Chung-Yu Chen ◽  
Chien-Rung Chen ◽  
Chiao-Nan Chen ◽  
Paulus S. Wang ◽  
Toby Mündel ◽  
...  

The purpose of this study is to evaluate the amphetamine effects on progesterone and estradiol production in rat granulosa cells and the underlying cellular regulatory mechanisms. Freshly dispersed rat granulosa cells were cultured with various test drugs in the presence of amphetamine, and the estradiol/progesterone production and the cytosolic cAMP level were measured. Additionally, the cytosolic-free Ca2+ concentrations ([Ca2+]i) were measured to examine the role of Ca2+ influx in the presence of amphetamine. Amphetamine in vitro inhibited both basal and porcine follicle-stimulating hormone-stimulated estradiol/progesterone release, and amphetamine significantly decreased steroidogenic enzyme activities. Adding 8-Bromo-cAMP did not recover the inhibitory effects of amphetamine on progesterone and estradiol release. H89 significantly decreased progesterone and estradiol basal release but failed to enhance a further amphetamine inhibitory effect. Amphetamine was capable of further suppressing the release of estradiol release under the presence of nifedipine. Pretreatment with the amphetamine for 2 h decreased the basal [Ca2+]i and prostaglandin F2α-stimulated increase of [Ca2+]i. Amphetamine inhibits progesterone and estradiol secretion in rat granulosa cells through a mechanism involving decreased PKA-downstream steroidogenic enzyme activity and L-type Ca2+ channels. Our current findings show that it is necessary to study the possibility of amphetamine perturbing reproduction in females.


2018 ◽  
Vol 19 (11) ◽  
pp. 3538 ◽  
Author(s):  
Brandon Lehrich ◽  
Yaxuan Liang ◽  
Pooya Khosravi ◽  
Howard Federoff ◽  
Massimo Fiandaca

It is known that culture media (CM) promotes cellular growth, adhesion, and protects explanted primary brain cells from in vitro stresses. The fetal bovine serum (FBS) supplement used in most CM, however, contains significant quantities of extracellular vesicles (EVs) that confound quantitative and qualitative analyses from the EVs produced by the cultured cells. We quantitatively tested the ability of common FBS EV-depletion protocols to remove exogenous EVs from FBS-supplemented CM and evaluated the influence such methods have on primary astrocyte culture growth and viability. We assessed two methodologies utilized for FBS EV removal prior to adding to CM: (1) an 18-h ultracentrifugation (UC); and (2) a commercial EV-depleted FBS (Exo-FBS™). Our analysis demonstrated that Exo-FBS™ CM provided the largest depletion (75%) of total FBS EVs, while still providing 6.92 × 109 ± 1.39 × 108 EVs/mL. In addition, both UC and Exo-FBS™ CM resulted in poor primary astrocyte cell growth and viability in culture. The two common FBS EV-depletion methods investigated, therefore, not only contaminate in vitro primary cell-derived EV analyses, but also provide a suboptimal environment for primary astrocyte cell growth and viability. It appears likely that future CM optimization, using a serum-free alternative, might be required to advance analyses of cell-specific EVs isolated in vitro.


2009 ◽  
Vol 21 (1) ◽  
pp. 209
Author(s):  
Y. Serita ◽  
C. Kubota ◽  
T. Kojima

This study tested whether embryo development yield using in vitro fertilization (IVF) could be improved by rocking cultures. Bovine ovaries were obtained at a slaughterhouse and transported to the laboratory within 6 h. Cumulus–oocyte complexes were collected and 20–25 were transferred in 100-μL drops of TCM-199 containing 10% fetal bovine serum and antibiotics under paraffin oil. Maturation was for 20–24 h at 38.5°C under 5% CO2 and 95% air in a humid atmosphere (IVM). In vitro fertilization was carried out for 6 h using frozen–thawed sperm from a single bull in modified Brackett and Oliphant (BO) medium. Presumptive zygotes were cultured in CR1aa supplemented with 10 mg mL–1 of BSA or 5% FBS for 9 d at 38.5°C under 5% CO2, 5% O2, and 90% N2 in a humid atmosphere (IVC). Rocking was performed to a height of 6 cm every 7 s using a Profile Rocker (New Brunswick Scientific Co., Edison, NJ, USA) in an incubator. Dishes were placed at a 15-cm distance from the fulcrum of the rocker. The conventional method (no rocking) served as a control, and every experiment was replicated 3 times. For Experiment 1, the effect of the period of rocking on developmental competence was examined when COC or zygotes were subjected to rocking for IVM, IVF, or IVC (IVM-move, IVF-move, and IVC-move). There were no significant differences in rates of oocyte maturation, cleavage, and development for IVM-move v. the control, or for rate of development between IVC-move and the control. However, the rate of fertilization for IVF-move was higher than that of the control (88.9 v. 67.5%; P < 0.01), and the rate of development was higher for IVF-move than for the control (39.0 v. 25.7%; P < 0.05). For Experiment 2, the effect of rocking frequency during IVF on development was determined. The IVF cultures were rocked every 7, 3.5, and 1.5 s (IVF-1move, IVF-2move, IVF-3move). The rates of cleavage on IVF-1move, IVF-2move, IVF-3move, and the control were 74.3, 69.8, 68.8, and 60.4%, and the rates of development were 39.0, 48.3, 26.2, and 25.7%, respectively. The rates of development on IVF-1move and IVF-2move were significantly different from the control and IVF-3move (P < 0.01). These results showed that rocking during IVF improved fertilization and embryo yield, and that frequency of rocking affected embryo development.


2014 ◽  
Vol 26 (1) ◽  
pp. 157
Author(s):  
S. Demyda-Peyrás ◽  
M. Hidalgo ◽  
J. Dorado ◽  
M. Moreno-Millan

Chromosomal numerical abnormalities (CNA) were described as a major cause of developmental failures in in vitro-produced (IVP) embryos. It has been described that CNA are influenced by the post-fertilization culture environment of the embryo. Furthermore, it was demonstrated that the use of different culture media affects the CNA rates. The addition of granulosa cells during early embryo development is a well-known procedure to simplify the culture of bovine IVP and cloned embryos. This technique avoids the use of culture environments saturated with N2 (tri-gas chambers). The aim of this study was to determine the effect of the addition of granulosa cells in the chromosomal abnormalities of IVP cattle embryos. Cumulus–oocyte complexes (COC) were matured in TCM-199 medium, supplemented with glutamine, sodium pyruvate, FSH, LH, oestradiol, and gentamicin during 20 h at 38.5°C in a 5% CO2 humid atmosphere. Subsequently, matured oocytes were fertilized in IVF-TALP medium using 1 × 106 spermatozoa mL–1, selected through a Percoll gradient centrifugation. After fertilization, zygotes were divided in 2 groups and cultured in TCM-199 medium for 48 h, with (TCM-GC) or without (TCM) the addition of 1 × 106 granulosa cells. These cells were obtained by centrifuging and washing the follicular fluid remaining from searching dishes and adjusted to the working concentration. After culture, a total of 106 early embryos (72 hpi) were cytogenetically evaluated following our standard laboratory techniques. Embryos showing normal development were individually fixed onto a slide, disaggregated into blastomeres with acetic acid, and stained with Giemsa solution. Chromosomal numerical abnormalities were evaluated by direct observation at 1250× magnification in a brightfield microscope. Percentage of normal diploid embryos (D) and abnormal haploid (H), polyploid (P), or aneuploid (A) embryos were determined. Results were statistically compared between treatments using a Z test for proportions. Results were: D = 81.4%, H = 7.2%, P = 7.2%. and A = 3.6% in TCM and D = 84.3%, H = 3.9%, P = 9.8%, and A = 1.9% in TCM-GC. No significant differences (P > 0.05) were found between culture media in the chromosomal abnormality rates. According to our results, the use of somatic cells in co-culture during embryo development did not influence the appearance of abnormal complements in the produced embryos. This would allow the use of GC as a potential complement to simplify the techniques used in the culture of bovine embryos until Day 3.


Sign in / Sign up

Export Citation Format

Share Document