38 Developmental competence of bovine cumulus–oocyte complexes collected from cows fed rumen-protected methionine and lysine

2021 ◽  
Vol 33 (2) ◽  
pp. 126
Author(s):  
M. Ritz ◽  
A. Gonzalez ◽  
A.-S. Fries ◽  
T. Scheu ◽  
N. Blad-Stahl ◽  
...  

Supplementation of rumen-protected amino acids (RPAA) has proven to be an effective tool to supply limiting AA in dairy diets. Methionine and lysine are the two most limiting AA for lactating dairy cows. Recently, it has been shown that methionine supplementation seems to affect pre-implantation embryos collected from superovulated cows enhancing their developmental competence because there is strong evidence that endogenous lipid reserves serve as an energy substrate (Acosta et al. 2016 Theriogenology 85, 1669–1679). Moreover, higher concentrations of methionine were determined in the follicular fluid of the first dominant follicle postpartum in cows supplemented with rumen-protected methionine and rumen-protected choline from 21 days before calving to 30 days postpartum and it was assumed that higher methionine concentrations in the follicular fluid could affect oocyte quality (Acosta et al. 2017 Theriogenology 96, 1–9). There is no information available so far regarding the effect of a combined methionine and lysine supplementation (each rumen-protected) on oocyte quality. Therefore, the objective of this study was to evaluate the effect of a combined methionine and lysine supplementation during early to mid-lactation on the developmental competence of oocytes collected from lactating dairy cows (days 0 to 100 p.p.). Thirty pregnant multiparous German Holstein dairy cows were grouped 3 weeks before their expected calving date, receiving identical diets. After calving, they were randomly allocated to 2 groups fed a total mixed ration supplemented with (N=14 cows; RPAA) or without (N=16 cows; CON) LysiGEMTM (encapsulated lysine; Kemin Industries) and Metasmart DryTM (isopropyl ester of the hydroxylated analogue of methionine adsorbed onto a silicon dioxide carrier; Adisseo). Starting from 45 days p.p., animals from both groups were submitted to an ovum pickup (OPU) session once a week for at least 8 weeks. Collected cumulus–oocyte complexes (COC) were subjected to a standard invitro production (IVP) protocol (Stinshoff et al. 2014 Reprod. Fertil. Dev. 26, 502–10) including IVM, IVF, and invitro culture (IVC). Cleavage and developmental rates up to the morula/blastocyst stage were recorded on Days 3, 7, and 8. In total, 1211 follicles have been aspirated from RPAA animals compared with 1413 from CON animals, from which 742 and 885 COC were collected, respectively. The calculated recovery rate based on the number of aspirated follicles and collected COC was similar for both groups (61.3±29.4% vs. 62.6±33.5%). Cleavage and developmental rates based on 240 (RPAA group) and 299 (CON group) COC also showed similar results [RPAA: 84.1±5.9% (202/240), 18.3±4.4% (44/240), 18.8±4.7% (45/240); CON: 81.9±8.6% (245/299), 15.4±8.9% (46/299), 16.7±8.4% (50/299)]. In conclusion, supplementation of RPAA (methionine and lysine) had no beneficial effect on the developmental competence of COC obtained from these animals compared with those collected from cows fed the diet without RPAA supplementation.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Á Martíne. Moro ◽  
I Lamas-Toranzo ◽  
L González-Brusi ◽  
A Pérez-Gómez ◽  
P Bermejo-Álvarez

Abstract Study question Does cumulus cell mtDNA content correlate with oocyte developmental potential in the bovine model? Summary answer The relative amount of mtDNA content did not vary significantly in oocytes showing different developmental outcomes following IVF What is known already Cumulus cells are closely connected to the oocyte through transzonal projections, serving essential metabolic functions during folliculogenesis. These oocyte-supporting cells are removed and discarded prior to ICSI, thereby constituting an interesting biological material on which to perform molecular analysis aimed to predict oocyte developmental competence. Previous studies have positively associated oocytés mtDNA content with developmental potential in both animal models and women. However, it remains debatable whether mtDNA content in cumulus cells could be used as a proxy to infer oocyte developmental potential. Study design, size, duration Bovine cumulus cells were allocated into three groups according to the developmental potential of the oocyte: 1) oocytes developing to blastocysts following IVF (Bl+Cl+), 2) oocytes cleaving following IVF but arresting their development prior to the blastocyst stage (Bl-Cl+), and 3) oocytes not cleaving following IVF (Bl-Cl-). Relative mtDNA content was analysed in 40 samples/group, each composed by the cumulus cells from one cumulus-oocyte complex (COC). Participants/materials, setting, methods Bovine cumulus-oocyte complexes were obtained from slaughtered cattle and individually matured in vitro (IVM). Following IVM, cumulus cells were removed by hyaluronidase treatment, pelleted, snap frozen in liquid nitrogen and stored at –80 ºC until analysis. Cumulus-free oocytes were fertilized and cultured in vitro individually and development was recorded for each oocyte. Relative mtDNA abundance was determined by qPCR, amplifying a mtDNA sequence (COX1) and a chromosomal sequence (PPIA). Statistical differences were tested by ANOVA. Main results and the role of chance Relative mtDNA abundance did not differ significantly (ANOVA p > 0.05) between the three groups exhibiting different developmental potential (1±0.06 vs. 1.19±0.05 vs. 1.11±0.05, for Bl+Cl+ vs. Bl-Cl+ vs. Bl-Cl-, mean±s.e.m.). Limitations, reasons for caution Experiments were conducted in the bovine model. Although bovine folliculogenesis, monoovulatory ovulation and early embryo development exhibit considerable similarities with that of humans, caution should be taken when extrapolating these data to humans. Wider implications of the findings: The use of molecular markers for oocyte developmental potential in cumulus cells could be used to enhance success rates following single-embryo transfer. Unfortunately, mtDNA in cumulus cells was not found to be a good proxy for oocyte quality. Trial registration number Not applicable


2009 ◽  
Vol 21 (1) ◽  
pp. 254 ◽  
Author(s):  
A. Hanstedt ◽  
K. Höffmann ◽  
Ä Honnens ◽  
H. Bollwein ◽  
C. Wrenzycki

On average, only 20% of the cumulus–oocyte complexes (COC) develop to the blastocyst stage (Merton et al. 2003 Theriogenology 59, 651–674). An increase in the blood supply to individual follicles appears to be associated with follicular growth rates, whereas a reduction seems to be closely related to follicular atresia (Acosta et al. 2003 Reproduction 125, 759–767). The purpose of this study was to determine whether qualitative perifollicular blood flow changes can be used to predict the developmental competence of COC collected during repeated ovum pickup (OPU) sessions once or twice weekly. Lactating Holstein cows (n = 20) were used as oocyte donors. After dominant follicle removal, OPU was performed twice (group 1, for 3 weeks) or once (group 2, for six weeks) weekly employing a 7.5-MHz transducer (GE 8C-RS) of an ultrasound scanner (GE Logiq Book). Follicle size and Doppler characteristics were recorded by transvaginal ultrasonography just before COC collection using color flow imaging. Owing for technical limitations for measurement of blood flow in small individual follicles, only the presence or absence of blood flow was assessed for each follicle. When a clearly visible blue or red spot (blood flow) was detected in the follicle wall, it was considered as a follicle with detectable blood flow. Follicles with or without detectable blood flow from each individual cow were aspirated separately. After morphological classification of COC, standard protocols for IVP were used for embryo production (Wrenzycki et al. 2001 Biol. Reprod. 65, 323–331). Cleavage and blastocyst rates were recorded at Day 3 and Day 8, respectively. In total, 464 (246 with and 218 without detectable blood flow) and 243 (125 with and 118 without detectable blood flow) follicles ≥3 mm were aspirated in group 1 and group 2, respectively. Morphology of the COC was similar in all groups. Developmental rates for COC stemming from follicles with or without detectable blood flow in group 1 did not show differences for cleavage rates, 54.0% (34/63) and 56.7% (45/81), and for blastocyst rates, 25.4% (16/63) and 22.2% (18/83), respectively. In group 2, the cleavage rates were also similar for COC originating from follicles with and without detectable blood flow, 54.3% (25/46) and 51.5% (34/66). However, developmental rates up to the blastocyst stage did show a significant difference, 23.9% (11/46) and 15.2% (10/66) for COC aspirated from follicles with or without detectable blood flow (P ≤ 0.05). These results show that using COC originating from follicles with detectable perifollicular blood flow collected once weekly may have a higher developmental competence compared to those from follicle without detectable blood flow. Within the detection limits of this study, differences in perifollicular blood flow during repeated OPU sessions once weekly were predictive of oocyte competence. Ruthe Research Farm, Germany, for providing the animals; Masterrind GmbH, Germany, for donation of the semen; and the HW Schaumann Stiftung for financial support.


2019 ◽  
Vol 102 (6) ◽  
pp. 5182-5190 ◽  
Author(s):  
S.L. Liang ◽  
Z.H. Wei ◽  
J.J. Wu ◽  
X.L. Dong ◽  
J.X. Liu ◽  
...  

Reproduction ◽  
2009 ◽  
Vol 138 (5) ◽  
pp. 771-781 ◽  
Author(s):  
Ali A Fouladi-Nashta ◽  
Karen E Wonnacott ◽  
Carlos G Gutierrez ◽  
Jin G Gong ◽  
Kevin D Sinclair ◽  
...  

Different fatty acid (FA) sources are known to influence reproductive hormones in cattle, yet there is little information on how dietary FAs affect oocyte quality. Effects of three dietary sources of FAs (supplying predominantly palmitic and oleic, linoleic (n-6) or linolenic (n-3) acids) on developmental potential of oocytes were studied in lactating dairy cows. A total of 12 Holstein cows received three diets containing rumen inert fat (RIF), soyabean or linseed as the main FA source for three periods of 25 days in a Latin-square design. Within each period, oocytes were collected in four ovum pick-up sessions at 3–4 day intervals. FA profiles in plasma and milk reflected profiles of dietary FA sources, but major FAs in granulosa cells were not affected. Dietary FA source did not affect plasma concentrations of leptin, insulin, IGF1, GH, or amino acids. RIF led to a higher proportion of cleaved embryos than soya or linseed, but blastocyst yield and embryo quality were not affected. It is concluded that the ovary buffers oocytes against the effects of fluctuations in plasma n-3 and n-6 FAs, resulting in only modest effects on their developmental potential.


2010 ◽  
Vol 1 (1) ◽  
pp. 195-195
Author(s):  
D J Humphries ◽  
R H Phipps ◽  
E Devillard ◽  
P-A Geraert ◽  
R Bennett ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Alma López ◽  
Miguel Betancourt ◽  
Yvonne Ducolomb ◽  
Juan José Rodríguez ◽  
Eduardo Casas ◽  
...  

Abstract Background The evaluation of the DNA damage generated in cumulus cells after mature cumulus-oocyte complexes vitrification can be considered as an indicator of oocyte quality since these cells play important roles in oocyte developmental competence. Therefore, the aim of this study was to determine if matured cumulus-oocyte complexes exposure to cryoprotectants (CPAs) or vitrification affects oocytes and cumulus cells viability, but also if DNA damage is generated in cumulus cells, affecting fertilization and embryo development. Results The DNA damage in cumulus cells was measured using the alkaline comet assay and expressed as Comet Tail Length (CTL) and Olive Tail Moment (OTM). Results demonstrate that oocyte exposure to CPAs or vitrification reduced oocyte (75.5 ± 3.69%, Toxicity; 66.7 ± 4.57%, Vitrification) and cumulus cells viability (32.7 ± 5.85%, Toxicity; 7.7 ± 2.21%, Vitrification) compared to control (95.5 ± 4.04%, oocytes; 89 ± 4.24%, cumulus cells). Also, significantly higher DNA damage expressed as OTM was generated in the cumulus cells after exposure to CPAs and vitrification (39 ± 17.41, 33.6 ± 16.69, respectively) compared to control (7.4 ± 4.22). In addition, fertilization and embryo development rates also decreased after exposure to CPAs (35.3 ± 16.65%, 22.6 ± 3.05%, respectively) and vitrification (32.3 ± 9.29%, 20 ± 1%, respectively). It was also found that fertilization and embryo development rates in granulose-intact oocytes were significantly higher compared to denuded oocytes in the control groups. However, a decline in embryo development to the blastocyst stage was observed after CPAs exposure (1.66 ± 0.57%) or vitrification (2 ± 1%) compared to control (22.3 ± 2.51%). This could be attributed to the reduction in both cell types viability, and the generation of DNA damage in the cumulus cells. Conclusion This study demonstrates that oocyte exposure to CPAs or vitrification reduced viability in oocytes and cumulus cells, and generated DNA damage in the cumulus cells, affecting fertilization and embryo development rates. These findings will allow to understand some of the mechanisms of oocyte damage after vitrification that compromise their developmental capacity, as well as the search for new vitrification strategies to increase fertilization and embryo development rates by preserving the integrity of the cumulus cells.


2011 ◽  
Vol 23 (1) ◽  
pp. 160
Author(s):  
E. Abele ◽  
H. Stinshoff ◽  
A. Hanstedt ◽  
S. Wilkening ◽  
S. Meinecke-Tillmann ◽  
...  

Several factors have been shown to alter the sex ratio of bovine embryos generated in vitro, i.e. the maturity of the oocyte at the time of insemination, the duration of sperm-oocyte co-incubation and the culture conditions after in vitro fertilization. It has been shown that the presence of glucose during in vitro culture reduced the development of female embryos to the blastocyst stage compared with controls cultured in the absence of glucose. The sex ratio of bovine embryos has also been linked with changes in the composition of the follicular fluid in which the oocyte undergoes growth and maturation, i.e. the intrafollicular testosterone concentration. However, no information is available regarding the effect of intrafollicular glucose concentration on the sex ratio of embryos after in vitro production (IVP). The purpose of this study was to determine whether different glucose concentrations in the follicular fluid at the time of cumulus–oocyte complex (COC) collection have an effect on the sex ratio of the resulting blastocysts after IVP. Ovaries from a local abattoir were transported to the laboratory within 2 h of slaughter. Follicles (3–8 mm) were individually dissected and the glucose concentration of each follicle was measured using a blood glucose monitoring system (Freestyle Freedom Lite, Abbott, Germany). Based on a glucose concentration, COC [low glucose: <1.1 mM (group 1) and high glucose: >1.1 mM (group 2)] were pooled in groups and used for blastocyst production employing standard protocols for IVP. Developmental rates were recorded at Day 3 (cleavage) and Day 7/8 (blastocyst stage). Total cell number of blastocysts was determined after Hoechst staining. Sex of the embryos was analysed via PCR using bovine X- and Y-chromosome specific primers. Developmental rates for COC stemming from follicles with different glucose concentrations did not show significant differences (P > 0.05) compared to each other [Cleavage rate: group 1: 81.8 ± 4.7% (93/117); group 2: 79.3 ± 4.9% (94/123); blastocyst rate: group 1: 35.6 ± 5.2% (38/117); group 2: 31.6 ± 5.2% (38/123)]. Total cell numbers were similar in embryos of both groups [Group 1: 117.7 ± 8.1 (n = 18); group 2: 117.2 ± 6.4 (n = 18)]. The overall sex ratio significantly differed (P < 0.05) from 1:1 in favour of females in both groups [Group 1: 85 v. 15% (n = 20); group 2: 63.6 v. 36.4% (n = 22)]. No significant difference (P > 0.05) in the overall sex ratio was detected in blastocysts produced under standard IVP conditions employed in the laboratory [without measurement of follicular glucose concentration, 55.0 v. 45.0%, (n = 20)]. In conclusion, under the conditions used in the present study, the intrafollicular glucose concentration from which the immature COC was collected affects the sex of the resulting embryo after IVP, favouring females. Further studies are needed to confirm these findings in living cows using the ovum pickup technique.


2019 ◽  
Vol 31 (1) ◽  
pp. 188
Author(s):  
G. Santos ◽  
M. P. Bottino ◽  
A. P. C. Santos ◽  
R. E. Orlandi ◽  
L. M. S. Simões ◽  
...  

The objective of this study was to evaluate the effect of mastitis diagnosed by somatic cell count (SCC) on follicular growth, ovulation, oocytes and cumulus cells quality and the concentration and size of exosomes in follicular fluid of dairy cows. In the study, crossbred cows (Bos taurus-Holstein×Bos indicus-Gir) were classified for analysis as control (SCC &lt;200.000 cells mL−1) and mastitis (SCC &gt;400.000 cells mL−1) groups. In Experiment 1 (follicular dynamics), cows (n=57: control=31; mastitis=26) received a progesterone intravaginal device (Sincrogest®, Ourofino Saude Animal, Cravinhos, Brazil) and 2mg of oestradiol benzoate (Sincrodiol®, Ourofino Saude Animal) injected IM. Eight days later (D8), the progesterone device was removed and cows received IM 500mg of cloprostenol (Sincrocio®, Ourofino Saude Animal), 1mg of oestradiol cypionate (SincroCP®, Ourofino Saude Animal) and 300IU of eCG (SicroeCG®, Ourofino Saude Animal). Ultrasound exams (Mindray 4900, probe linear de 5MHz, Shenzhen, China) were performed every 24h from removal of the progesterone-releasing intravaginal device (D8) until 48h later. Thereafter, evaluations were performed every 12h, until ovulation or up to 96h after removal of the progesterone-releasing intravaginal device. In Experiment 2 (oocyte, cumulus complexes, and follicular fluid evaluation), cows (n=26: control=13; mastitis=13) were submitted to follicular aspiration (ovum pickup) for oocyte quality and cumulus cells transcript evaluation. Transcript abundance of apoptosis markers (BCL2, BAX, PI3K, PTEN, FOXO3) was determined by real-time RT-PCR. Moreover, 7 days after the ovum pickup session, the dominant follicle was aspirated and follicular fluid samples were obtained. Exosomes were isolated from the follicular fluid by serial centrifugations, which were also performed for evaluation of particle size and concentration. Statistical analyses were performed using the SAS (SAS Institute Inc., Cary, NC, USA), and the GLIMMIX procedure was used to determine significant differences between groups. Gene expression and exosome data were submitted to the Student’s t-test. Ovulation rate [control 77.4% (24/31) and mastitis 57.7% (15/26); P=0.09] and viable oocytes rate [control 59.1% (130/220) and mastitis 41.9% (125/298); P=0.01] were higher in control animals. Additionally, there was a greater number of degenerate oocytes (control 6.7±1.2 and mastitis 13.3±5.5; P=0.001) in subclinical mastitis cows. There was greater abundance (P=0.003) of BAX cumulus cell transcripts and exosome mean (P=0.03) was smaller in subclinical mastitis cows. However, BCL2, PI3K, PTEN, nd FOXO3 cumulus cell transcripts was similar between treatments. In conclusion, ovulation rate, oocyte quality, and exosome diameter were smaller in cows with SCC &gt;400.000 cells mL−1, demonstrating that subclinical mastitis can influence the fertility of dairy cows.


2010 ◽  
Vol 22 (8) ◽  
pp. 1222 ◽  
Author(s):  
M. Bertoldo ◽  
P. K. Holyoake ◽  
G. Evans ◽  
C. G. Grupen

The modern domestic sow exhibits a period of impaired reproductive performance during the late summer and early autumn months, known as ‘seasonal infertility’. A reduction in farrowing rate due to pregnancy loss is the most economically important manifestation of seasonal infertility. The aim of the present study was to determine whether there are changes in oocyte developmental competence associated with season. Ovaries were collected in pairs from sows sourced from commercial piggeries and slaughtered 4 days after weaning during winter and summer–autumn. Following oocyte IVM and parthenogenetic activation, the ability of oocytes from large follicles to form blastocysts was greater in winter (54.94 ± 6.11%) than in summer (21.09 ± 5.59%). During winter, the proportion of oocytes developing to the blastocyst stage from large follicles was significantly higher (54.94 ± 6.11%) than those oocytes from small follicles (23.17 ± 6.02%). There was no effect of season on the proportion of oocytes developing to the blastocyst stage from small follicles. There was no effect of follicle size on blastocyst formation from those oocytes recovered during summer. Blastocysts derived from small follicles during summer had the lowest number of cells (24.25 ± 1.48) compared with blastocysts derived from large follicles during winter (37.5 ± 1.3; P < 0.05). The mean progesterone concentration in follicular fluid collected from small follicles was greater in winter than summer (1235.55 ± 164.47 v. 701.3 ± 115.5 nmol L–1, respectively; P < 0.001). The mean progesterone concentration in the follicular fluid of large follicles was also greater in winter than in summer (2470.9 ± 169.1 v. 1469.2 ± 156.5 nmol L–1, respectively; P < 0.001). Regression analysis revealed a positive correlation between progesterone concentration and oocyte developmental competence. The results indicate that porcine oocytes fail to reach their full developmental potential during the period of seasonal infertility, suggesting that the pregnancy losses observed at this time of year may be due to reduced oocyte developmental competence.


Sign in / Sign up

Export Citation Format

Share Document