Soil organic carbon dynamics under long-term sugarcane monoculture

Soil Research ◽  
1999 ◽  
Vol 37 (1) ◽  
pp. 151 ◽  
Author(s):  
J. O. Skjemstad ◽  
J. A. Taylor ◽  
L. J. Janik ◽  
S. P. Marvanek

Comparisons of soil samples from virgin sites or sites recently planted to sugarcane (new) with sites that had been under cane production for many years (old) were made to investigate the potential impact of cane production on soil organic carbon (OC) levels and chemistry. The comparisons showed that very little change had occurred in total OC and in ‘light’ fraction (<1·6 Mg/m3). Increasing pyrophosphate extractability throughout the profile at some sites, as a result of cultivation, however, suggested that the organic matter generally became more ‘humified’ with long-term cane production. Evidence is presented for a redistribution of OC within profiles under cane production. Old, well-established cane sites had soils with lower OC levels in the surface horizons and higher levels in the subsoils relative to new sites. The overall chemistry of the soil organic matter, as indicated by solid state 13C nuclear magnetic resonance spectroscopy, did not change significantly at each site even though between site differences were large. Some soils contained substantial amounts of charcoal which was of pre-cane origin. In some of the coarse-textured soils, smaller amounts of charcoal produced during the burning of cane appeared to accumulate below the A1 horizons in the profiles. It also appeared likely that the redistribution of carbon in the upper horizons of some soils resulted from the movement of charcoal within the profile, probably as a result of tillage.

1993 ◽  
Vol 73 (1) ◽  
pp. 133-136 ◽  
Author(s):  
C. M. Monreal ◽  
H. H. Janzen

The temporal change of soil organic-carbon (Corg) was studied in soil samples taken from long-term crop rotations at Lethbridge. Between 1910 and 1990, net Corg losses for the 0–15 cm depth varied between 23% under fallow–wheat (FW) and 21% under fallow–wheat–wheat (FWW) and 17% under continuous wheat (W). Analysis of variance and an LSD test indicated that in 1990 the surface Corg concentrations were similar among all crop rotations. Corg in the 15–30 cm depth decreased over time and was significantly lower than in surface samples. Key words: Organic carbon, dry combustion, cold-wet dichromate digestion


Soil Research ◽  
2013 ◽  
Vol 51 (8) ◽  
pp. 561 ◽  
Author(s):  
J. A. Baldock ◽  
J. Sanderman ◽  
L. M. Macdonald ◽  
A. Puccini ◽  
B. Hawke ◽  
...  

Soil organic carbon (OC) exists as a diverse mixture of organic materials with different susceptibilities to biological decomposition. Computer simulation models constructed to predict the dynamics of soil OC have dealt with this diversity using a series of conceptual pools differentiated from one another by the magnitude of their respective decomposition rate constants. Research has now shown that the conceptual pools can be replaced by measureable fractions of soil OC separated on the basis of physical and chemical properties. In this study, an automated protocol for allocating soil OC to coarse (>50 µm) and fine (≤50 µm) fractions was assessed. Automating the size fractionation process was shown to reduce operator dependence and variability between replicate analyses. Solid-state 13C nuclear magnetic resonance spectroscopy was used to quantify the content of biologically resistant poly-aryl carbon in the coarse and fine size fractions. Cross-polarisation analyses were completed for coarse and fine fractions of 312 soils, and direct polarisation analyses were completed for 38 representative fractions. Direct polarisation analyses indicated that the resistant poly-aryl carbon was under-represented in the cross-polarisation analyses, on average, by a factor of ~2. Combining this under-representation with a spectral analysis process allowed the proportion of coarse- and fine-fraction OC existing as resistant poly-aryl C to be defined. The content of resistant OC was calculated as the sum of that found in the coarse and fine fractions. Contents of particulate and humus OC were calculated after subtracting the resistant OC from the coarse and fine fractions, respectively. Across the 312 soils analysed, substantial variations in the contents of humus, particulate, and resistant carbon were noted, with respective average values of 9.4, 4.0, and 4.5 g fraction C/kg soil obtained. When expressed as a proportion of the OC present in each soil, the humus, particulate, and resistant OC accounted for 56, 19, and 26%, respectively. The nuclear magnetic resonance analyses also indicated that the use of a 50-µm sieve to differentiate particulate (>50 µm) from humus (≤50 µm) forms of OC provided an effective separation based on extents of decomposition. The procedures developed in this study provided a means to differentiate three biologically significant forms of soil OC based on size, extent of decomposition, and chemical composition (poly-aryl content).


CATENA ◽  
2017 ◽  
Vol 151 ◽  
pp. 63-73 ◽  
Author(s):  
Samuel Bouchoms ◽  
Zhengang Wang ◽  
Veerle Vanacker ◽  
Sebastian Doetterl ◽  
Kristof Van Oost

Soil Research ◽  
1995 ◽  
Vol 33 (6) ◽  
pp. 975 ◽  
Author(s):  
A Golchin ◽  
P Clarke ◽  
JM Oades ◽  
JO Skjemstad

Soil samples were obtained from the surface horizons of five untilled sites and adjacent sites under short- and long-term cultivation. The soil samples were fractionated based on density and organic materials were concentrated in various fractions which enabled comparative chemical composition of the organic materials in cultivated and uncultivated sites by solid-state C-13 CP/MAS NMR spectroscopy. Changes in the nature of organic carbon with cultivation were different in different soils and resulted from variations in the chemistry of carbon inputs to the soils and a greater extent of decomposition of organic materials in cultivated soils. Differences in the chemical composition of organic carbon between cultivated and uncultivated soils resided mostly in organic materials occluded within aggregates, whereas the chemistry of organic matter associated with clay particles showed only small changes. The results indicate a faster decomposition of O-alkyl C in the cultivated soils. Wet aggregate stability, mechanically dispersible clay and modulus of rupture tests were used to assess the effects of cultivation on structural stability of soils. In four of five soils, the virgin sites and sites which had been under long-term pasture had a greater aggregate stability than the cultivated sites. Neither total organic matter nor total O-alkyl C content was closely correlated with aggregate stability, suggesting that only a part of soil carbon or carbohydrate is involved in aggregate stability. The fractions of carbon and O-alkyl C present in the form of particulate organic matter occluded within aggregates were better correlated with aggregate stability (r = 0.86** and 0.88**, respectively). Cultivation was not the dominant factor influencing water-dispersible clay across the range of soil types used in this study. The amount of dispersible clay was a function of total clay content and the percentage of clay dispersed was controlled by factors such as clay mineralogy, CaCO3 and organic matter content of soils. The tendency of different soils for hard-setting and crusting, as a result of structural collapse, was reflected in the modulus of rupture (MOR). The cultivated sites had significantly higher MOR than their non-tilled counterparts. The soils studied had different MOR due to differences in their physical and chemical properties.


2011 ◽  
Vol 103 (1) ◽  
pp. 234-246 ◽  
Author(s):  
H. T. Gollany ◽  
R. W. Rickman ◽  
Y. Liang ◽  
S. L. Albrecht ◽  
S. Machado ◽  
...  

2021 ◽  
Vol 305 ◽  
pp. 107184 ◽  
Author(s):  
Thomas Guillaume ◽  
Luca Bragazza ◽  
Clément Levasseur ◽  
Zamir Libohova ◽  
Sokrat Sinaj

Sign in / Sign up

Export Citation Format

Share Document