scholarly journals Phylogenetic analysis of Australian species of Veronica (V. section Labiatoides; Plantaginaceae)

2012 ◽  
Vol 25 (5) ◽  
pp. 353 ◽  
Author(s):  
Dirk C. Albach ◽  
Barbara G. Briggs

Phylogenetic analyses of DNA-sequence data have revealed that the southern hemisphere species of Veronica are derived from within the northern hemisphere Veronica clade. Previous analyses focussed on the species in New Zealand and included at maximum 7 of 23 species of section Labiatoides from Australia. In the present study, we used nuclear ribosomal-ITS and plastid ndhF–rpl32-spacer sequence data of all species currently recognised in Australia to analyse phylogenetic patterns. Most importantly, herbaceous species from coastal calcareous sands or limestone habitats do not form a clade with those from shady, moist forest habitats, as formerly believed, but seem to be independently derived from woody species. Incongruence between results from nuclear- and plastid-DNA markers suggest hybridisation to be an important factor in the evolution of the group. Our sample of V. parnkalliana included alleles similar to V. decorosa and V. novae-hollandiae at both loci, which suggests a hybrid origin.

Phytotaxa ◽  
2013 ◽  
Vol 152 (1) ◽  
pp. 59
Author(s):  
Karol Marhold ◽  
Petr Sklenář

Lasiocephalus Willd. ex Schlechtendal (1818: 308), as traditionally circumscribed (e.g., by Cuatrecasas 1978, Dušková et al. 2010), is a neotropical genus of ca 25 species confined to the Andes and distributed from Venezuela to Bolivia. Nevertheless, recent studies by Pelser et al. (2007, 2010) have shown that based on phylogenetic analyses of nrITS and plastid DNA sequence data, species of the genus Lasiocephalus are deeply embedded in Senecio Linnaeus (1753: 866), and, consequently, should be transferred into this latter genus. In fact, a number of species of Lasiocephalus were originally described as Senecio or had been, at some point, transferred into Senecio so only few transfers are necessary.


Phytotaxa ◽  
2018 ◽  
Vol 376 (6) ◽  
pp. 254 ◽  
Author(s):  
RATIDZAYI TAKAWIRA-NYENYA ◽  
LADISLAV MUCINA ◽  
WARREN M. CARDINAL-MCTEAGUE ◽  
KEVIN R. THIELE

The evolutionary history of the dracaenoid genera Dracaena and Sansevieria (Asparagaceae, Nolinoideae) remains poorly resolved, despite long-recognised issues with their generic boundaries and increased attention paid by both horticulturalists and taxonomists. In this study we aim to: (1) elucidate evolutionary relationships within and between Dracaena and Sansevieria using molecular phylogenetic inference of both nuclear (nDNA) and plastid (cpDNA) markers, (2) examine the infrageneric classifications of each genus, and (3) revise the circumscription of the dracaenoids in light of morphological and phylogenetic evidence. In total, we sampled 21 accessions of Dracaena (ca. 19 species), 27 accessions of Sansevieria (ca. 26 species), and six outgroup taxa. Phylogenetic analyses were based on nucleotide sequences of two non-coding plastid DNA regions, the trnL-F region (trnL intron and trnL-trnF intergenic spacer) and rps16 intron, and the low-copy nuclear region At103. Phylogenetic hypotheses were constructed using maximum parsimony, maximum likelihood, and Bayesian inference. Individual datasets were analysed separately and, after testing for congruence, as combined datasets. We recovered instances of soft incongruence between nDNA and cpDNA datasets in Sansevieria, but general trends in the dracaenoids were congruent, although often poorly supported or resolved. The dracaenoids constitute a strongly supported monophyletic group. Dracaena was resolved as a paraphyletic grade embedded with two clades of Sansevieria, a primary clade comprising most species, and a secondary clade including S. sambiranensis, a distinctive species from Madagascar. The backbone of our phylogeny was only resolved in nDNA analyses, but combined analyses recovered strongly supported species groups. None of the previous infrageneric classifications were supported by our phylogeny, and biogeographic groupings were frequently more significant than morphology. More work is needed to resolve internal relationships in the dracaenoids, but we support a recent proposal to recognise a broadened circumscription of Dracaena that includes Sansevieria. We provide a generic description for the recircumscribed Dracaena and new combinations for several species of Sansevieria in Dracaena.


2021 ◽  
Vol 9 (3) ◽  
pp. 666
Author(s):  
Niccolò Forin ◽  
Alfredo Vizzini ◽  
Federico Fainelli ◽  
Enrico Ercole ◽  
Barbara Baldan

In a recent monograph on the genus Rosellinia, type specimens worldwide were revised and re-classified using a morphological approach. Among them, some came from Pier Andrea Saccardo’s fungarium stored in the Herbarium of the Padova Botanical Garden. In this work, we taxonomically re-examine via a morphological and molecular approach nine different Roselliniasensu Saccardo types. ITS1 and/or ITS2 sequences were successfully obtained applying Illumina MiSeq technology and phylogenetic analyses were carried out in order to elucidate their current taxonomic position. Only the ITS1 sequence was recovered for Rosellinia areolata, while for R. geophila, only the ITS2 sequence was recovered. We proposed here new combinations for Rosellinia chordicola, R. geophila and R. horridula, while for R. ambigua, R. areolata, R. australis, R. romana and R. somala, we did not suggest taxonomic changes compared to the current ones. The name Rosellinia subsimilis Sacc. is invalid, as it is a later homonym of R. subsimilis P. Karst. & Starbäck. Therefore, we introduced Coniochaeta dakotensis as a nomen novum for R. subsimilis Sacc. This is the first time that these types have been subjected to a molecular study. Our results demonstrate that old types are an important source of DNA sequence data for taxonomic re-examinations.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1329-1332 ◽  
Author(s):  
J. Roux ◽  
H. Myburg ◽  
B. D. Wingfield ◽  
M. J. Wingfield

Cryphonectria cubensis is an economically important pathogen of commercial Eucalyptus spp. Differences have been reported for disease symptoms associated with Cryphonectria canker in South Africa and other parts of the world, and recent DNA-based comparisons have confirmed that the fungus in South Africa is different from that in South America and Australasia. During a disease survey in the Republic of Congo, Cryphonectria canker was identified as an important disease on Eucalyptus grandis and E. urophylla. In this study, we compared Congolese and South African isolates of C. cubensis using DNA sequence data and pathogenicity under greenhouse conditions. The β-tubulin and internal transcribed spacer (ITS) region sequences show that C. cubensis in Congo is different from the fungus in South Africa and that Congolese isolates group most closely with South American isolates. Furthermore, pathogenicity tests showed that a South African isolate was more aggressive than two Congolese isolates. We conclude that two distinct Cryphonectria spp. occur in Africa and hypothesize that the fungus in the Congo probably was introduced into Africa from South America. Both fungi are important pathogens causing disease and death of economically important plantation trees. However, they apparently have different origins and must be treated separately in terms of disease management and quarantine considerations.


2017 ◽  
Vol 31 (6) ◽  
pp. 781 ◽  
Author(s):  
Savel R. Daniels ◽  
Megan Dreyer ◽  
Prashant P. Sharma

During the present study, we examined the phylogeography and systematics of two species of velvet worm (Peripatopsis Pocock, 1894) in the forested region of the southern Cape of South Africa. A total of 89 P. moseleyi (Wood-Mason, 1879) and 65 P. sedgwicki (Purcell, 1899) specimens were collected and sequenced for the cytochrome c oxidase subunit I mtDNA (COI). In addition, a single P. sedgwicki specimen per sample locality was sequenced for the 18S rRNA locus. Furthermore, morphological variation among P. sedgwicki sample localities were explored using traditional alpha taxonomic characters. DNA sequence data were subjected to phylogenetic analyses using Bayesian inference and population genetic analyses using haplotype networks and analyses of molecular variance (AMOVAs). Phylogenetic results revealed the presence of four and three clades within P. moseleyi and P. sedgwicki respectively. Haplotype networks were characterised by the absence of shared haplotypes between clades, suggesting genetic isolation, a result corroborated by the AMOVA and highly significant FST values. Specimens from Fort Fordyce Nature Reserve were both genetically and morphologically distinct from the two remaining P. sedgwicki clades. The latter result suggests the presence of a novel lineage nested within P. sedgwicki and suggests that species boundaries within this taxon require re-examination.


Phytotaxa ◽  
2021 ◽  
Vol 480 (1) ◽  
pp. 29-44
Author(s):  
GUO-CHENG ZHANG ◽  
HUA-FENG HONG ◽  
GE-HONG CHEN ◽  
SHU-GANG LU ◽  
YAN-FEN CHANG

The Hymenasplenium obliquissimum group contains the widespread H. obliquissimum and several geographically restricted species, including H. retusulum, H. wuliangshanense, H. latidens, H. changputungense, H. quercicola, H. szechuanense, H. furfuraceum, H. adiantifrons, and H. filipes. However, the taxonomy of this group is still unclear and needs to be revised because some entities were treated infraspecifically or as synonyms and the validation of some species still needs to be assessed. To formulate a natural classification and investigate the relationships in this group, we collected and studied specimens of species related to the H. obliquissimum group and obtained specimens of species described by Ching at their locus classicus in southwestern China. An integrative taxonomic approach was taken to delimit species in the group using cytological, morphological, and DNA sequence data. Specifically, in the phylogenetic analyses, the H. obliquissimum group was recovered as a monophyletic group, comprising five principal chloroplast lineages. Based on our inferences, we provided taxonomic implications of chloroplast lineages discovered in this study and suggested possible reticulate evolution in the H. obliquissimum group which was interpreted by the incongruence of chloroplast and nuclear phylogenies. Further studies to strengthen the taxonomic of taxa especially those with the co-existence of different ploidy levels are still warranted.


2020 ◽  
Author(s):  
Patrick J. Brownsey ◽  
Daniel J. Ohlsen ◽  
Lara D. Shepherd ◽  
Whitney L. M. Bouma ◽  
Erin L. May ◽  
...  

Five indigenous species of Pellaea in Australasia belong to section Platyloma. Their taxonomic history is outlined, morphological, cytological and genetic evidence for their recognition reviewed, and new morphological and chloroplast DNA-sequence data provided. Australian plants of P. falcata (R.Br.) Fée are diploid and have longer, narrower pinnae than do New Zealand plants previously referred to P. falcata, which are tetraploid. Evidence indicates that P. falcata does not occur in New Zealand, and that collections so-named are P. rotundifolia (G.Forst.) Hook. Chloroplast DNA sequences are uninformative in distinguishing Australian P. falcata from New Zealand P. rotundifolia, but show that Australian P. nana is distinct from both. Sequence data also show that Australian and New Zealand populations of P. calidirupium Brownsey & Lovis are closely related, and that Australian P. paradoxa (R.Br.) Hook. is distinct from other Australian species. Although P. falcata is diploid and P. rotundifolia tetraploid, P. calidirupium, P. nana (Hook.) Bostock and P. paradoxa each contain multiple ploidy levels. Diploid populations of Pellaea species are confined to Australia, and only tetraploids are known in New Zealand. Evolution of the group probably involved hybridisation, autoploidy, alloploidy, and possibly apomixis. Further investigation is required to resolve the status of populations from Mount Maroon, Queensland and the Kermadec Islands.


Phytotaxa ◽  
2014 ◽  
Vol 161 (2) ◽  
pp. 157 ◽  
Author(s):  
Sinang Hongsanan ◽  
Putarak Chomnunti ◽  
Pedro W. Crous ◽  
Ekachai Chukeatirote ◽  
Kevin D. Hyde

The order Microthyriales comprises foliar biotrophs, epiphytes, pathogens or saprobes that occur on plant leaves and stems. The order is relatively poorly known due to limited sampling and few in-depth studies. There is also a lack of phylogenetic data for these fungi, which form small black spots on plant host surfaces, but rarely cause any damage to the host. A "Microthyriaceae"-like fungus collected in central Thailand is described as a new genus, Chaetothyriothecium (type species Chaetothyriothecium elegans sp. nov.). Phylogenetic analyses of LSU gene data showed this species to cluster with other members of Microthyriales, where it is related to Microthyrium microscopicum the type of the order. The description of the new species is supplemented by DNA sequence data, which resolves its placement in the order. Little molecular data is available for this order, stressing the need for further collections and molecular data.


2014 ◽  
Vol 62 (3) ◽  
pp. 235 ◽  
Author(s):  
S. Safaei Chaei Kar ◽  
F. Ghanavati ◽  
M. R. Naghavi ◽  
H. Amirabadi-zade ◽  
R. Rabiee

Onobrychis, comprising more than 130 species, is a genus of the family Fabaceae. At this time, the interspecies relationship of this biologically important genus is still a subject of great discussion and debate. To help resolve this disagreement, we used molecular phylogeny to analyse internal transcribed spacer (ITS) and trnL–trnF sequences of 76 species of Onobrychis. Bayesian interference, maximum parsimony and maximum likelihood analyses of nuclear ITS and plastid trnL–trnF DNA sequence data generated trees with strong posterior probability for two groups: Onobrychis subgen. Sisyrosema (including: Heliobrychis, Hymenobrychis, Afghanicae and Anthyllium sections) along with Laxiflorae section in Group I and Onobrychis subgen. Onobrychis (except Laxiflorae section) in the other (Group II). The Laxiflorae section roots back to the ancestral node for Sisyrosema subgen. O. viciifolia (cultivated species), which is closely associated with O. cyri var. cyri, suggesting that the latter may be a wild progenitor of O. viciifolia. The present study supported the paraphyly of subgenera Onobrychis and Sisyrosema. The study proposed the paraphyletic nature of the sections Onobrychis, Dendrobrychis, Heliobrychis and Hymenobrychis. Together with our molecular phylogenetic analyses we present a review of Onobrychis morphology and discuss and compare our results with those of earlier morphological and molecular phylogenetic analyses.


Sign in / Sign up

Export Citation Format

Share Document