Measuring peat moisture content using the dual-probe heat pulse technique

Soil Research ◽  
2002 ◽  
Vol 40 (1) ◽  
pp. 177 ◽  
Author(s):  
David I. Campbell ◽  
Claire E. Laybourne ◽  
Ian J. Blair

The dual-probe heat pulse (DPHP) technique for measuring soil volumetric moisture content (Θv) is evaluated for use in peat soils with very high organic matter contents. The method has a greater sensitivity in peat soils compared with mineral soils and excellent resolution is possible, even at moisture contents as high as 90% by volume. Advantages of the DPHP technique are that sensors are simple to construct from inexpensive parts and calibration is not required since the method is based on a physical model of radial heat flow in soil. A multiplexer method was developed to allow multiple probes to be deployed in the field. DPHP measurements of Θv for small peat samples compared closely to reference measurements made using the gravimetric method, and in the field were similar to results obtained using a time domain reflectometry (TDR) method. Peat soils display a high level of spatial variation in Θv at the scales of both DPHP and TDR probes, so that multiple probes of each type are required for adequate spatial sampling of Θv. Rapid changes in peat moisture content were recorded following rainfall infiltration events yet moisture storage did not remain elevated following rainfall, even for peat that was very dry. wetlands, hydrology, soil moisture.

1998 ◽  
Vol 123 (5) ◽  
pp. 937-941 ◽  
Author(s):  
Y. Song ◽  
J.M. Ham ◽  
M.B. Kirkham ◽  
G.J. Kluitenberg

Measurements of soil water content near the soil surface often are required for efficient turfgrass water management. Experiments were conducted in a greenhouse to determine if the dual-probe heat-pulse (DPHP) technique can be used to monitor changes in soil volumetric water content (θv) and turfgrass water use. `Kentucky 31' Tall fescue (Festuca arundinacea Schreb.) was planted in 20-cm-diameter containers packed with Haynie sandy loam (coarse-silty, mixed, calcareous, mesic Typic Udifluvents). Water content was measured with the DPHP sensors that were placed horizontally at different depths between 1.5 and 14.4 cm from the surface in the soil column. Water content also was monitored gravimetrically from changes in container mass. Measurements started when the soil surface was covered completely by tall fescue. Hence, changes in θv could be attributed entirely to water being taken up by roots of tall fescue. Daily measurements were taken over multiple 6- or 7-day drying cycles. Each drying cycle was preceded by an irrigation, and free drainage had ceased before measurements were initiated. Soil water content dropped from ≈0.35 to 0.10 m3·m-3 during each drying cycle. Correlation was excellent between θv and changes in water content determined by the DPHP and gravimetric methods. Comparisons with the gravimetric method showed that the DPHP sensors could measure average container θv within 0.03 m3·m-3 and changes in soil water content within 0.01 m3·m-3.


2019 ◽  
Vol 166 (2) ◽  
pp. B63-B67 ◽  
Author(s):  
Almaw Ayele Aniley ◽  
Naveen Kumar S. K. ◽  
Akshaya Kumar A. ◽  
Renny Edwin Fernandez ◽  
Shekhar Bhansali

2020 ◽  
Vol 172 ◽  
pp. 17001
Author(s):  
Teresa Stingl Freitas ◽  
Ana Sofia Guimarães ◽  
Staf Roels ◽  
Vasco Peixoto de Freitas ◽  
Andrea Cataldo

Measuring moisture content in building materials is crucial for the correct diagnosis of buildings’ pathologies and for the efficiency evaluation of the treatment solution applied. There are several different techniques available to measure the moisture content in construction materials. However, perform long-term minor-destructive measurements is still a great challenge. The TDR – Time Domain Reflectometry – technique is commonly used for moisture content measurements in soils, but is considered a relatively new method with regard to its application in construction materials. In the present state of research, the current use of the TDR technique for monitoring moisture content in all types of consolidated porous building materials is not possible yet. Indeed, the empirical conversion functions proposed for soils are mostly not suitable for building materials. Furthermore, to successfully use the TDR technique, a good contact between the TDR probe and the material under study is required, which may be difficult to achieve in hard materials. In this paper, the TDR technique was implemented in two limestone walls constructed in the lab to test experimentally the efficiency of a wall-base ventilation channel to speed up drying after a flood. Each wall was equipped with four two-rod TDR probes for continuous monitoring the moisture content in both situations: with and without the ventilation channel. All the equipment used, procedures followed during the drilling until the probes’ final installation, as well as the individual calibration required for each probe are explained in detail. Instead of using unsuitable functions proposed for soils, the evaluation of the moisture content from the apparent relative dielectric permittivity measured was established using as reference method the gravimetric method. The results obtained suggest that the TDR technique is suitable for moisture content monitoring in consolidated porous building materials.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1097C-1097
Author(s):  
Todd C. Einhorn ◽  
Horst W. Caspari ◽  
Steve Green

Approach-grafted 1-year-old `Gala'/M7 apple trees were grown with both tops for the remainder of the 2003 season in a greenhouse. Trees were supplied with >100% (control, PRD100) or 50% (PRD50, DI50) of daily ETc either applied to one root compartment only (PRD100, PRD50) or divided evenly across both root compartments (control and DI50). ETc was estimated from gravimetric measurements, and irrigation was switched between wet and dry root compartments several times throughout the experiment. Soil moisture was measured both gravimetrically (tripod) and volumetrically (time-domain reflectometry). Predawn leaf water potential (υpd) and single leaf gas exchange (photosynthesis, stomatal conductance, and transpiration) were recorded daily, and sap flow in stems and roots was monitored continuously using the heat-pulse technique. Leaves were collected for abscisic acid (ABA) determination following gas exchange measurements. Regardless of irrigation placement (i.e., PRD or DI), both 50% ETc treatments experienced similar declines in υpd and single leaf gas exchange relative to control levels. In addition, ABA concentrations were similar for PRD50 and DI50, and were significantly higher than the control and PRD100 treatments. PRD100 trees had similar υpd as control trees; however, gas exchange was reduced >25% compared to the control. Bulk leaf ABA concentration did not differ significantly from control levels and does not by itself explain the down regulation of stomata with PRD100.


2020 ◽  
Vol 12 (19) ◽  
pp. 7855 ◽  
Author(s):  
Teresa Stingl Freitas ◽  
Ana Sofia Guimarães ◽  
Staf Roels ◽  
Vasco Peixoto de Freitas ◽  
Andrea Cataldo

Measuring moisture content in building materials is essential both for professional practice and for research. However, this is a very complex task, especially when long-term minor destructive measurements are desired. The time-domain reflectometry (TDR) technique is commonly used for soil moisture measurements, but its application in construction materials is considered a relatively new method, particularly for low-porosity building materials. The major obstacles to its current use in construction materials are (1) the difficulty of ensuring good contact between the TDR probe and the material, and (2) the lack of appropriate conversion functions between the measured relative permittivity and the moisture content of building materials. This paper intends to contribute to overcoming these difficulties by explaining in detail all the required steps to monitor moisture content in real-scale limestone walls. For that, a device is presented to guarantee the correct installation of the TDR probes on the walls, and a calibration procedure through the gravimetric method is proposed to avoid the use of an unsuitable calibration function developed for soil moisture measurements. In addition, the importance of the individual probe calibration is discussed, as well as TDR advantages and disadvantages for construction materials. The results obtained so far reveal that the TDR technique is suitable to detect moisture content variations in limestone, which is a low-porosity building material.


2015 ◽  
Vol 233 ◽  
pp. 108-117 ◽  
Author(s):  
Nikhil Jorapur ◽  
Vinay S. Palaparthy ◽  
Shahbaz Sarik ◽  
Jobish John ◽  
Maryam Shojaei Baghini ◽  
...  

Soil Research ◽  
2000 ◽  
Vol 38 (5) ◽  
pp. 927 ◽  
Author(s):  
Y. Song ◽  
M. B. Kirkham ◽  
J. M. Ham ◽  
G. J. Kluitenberg

Roots are movers of water in the soil. One method of movement is through hydraulic lift, which occurs when plants extract water from a moist subsoil and release it into a dry topsoil. Detection of hydraulic lift has been hampered by the lack of instruments sensitive enough to measure the small amount of water moved. Recently, the dual-probe heat-pulse (DPHP) technique has been used to monitor with fine spatial resolution the soil water content in root-zones. The objective of this research was to determine if water is released by hydraulic lift, using the DPHP technique. Sunflower (Helianthus annuus L.) was grown in a column (38 cm height; 25 cm diam.; bulk density = 1.45 Mg/m3) packed with a Haynie very fine sandy loam (coarse-silty, mixed, calcareous, mesic Mollic Udifluvents; FAO-Eutric Fluvisols) with its roots divided between a top dry layer and a lower wet layer. Eight DPHP sensors installed in the soil column were used to monitor soil water content. During 24 measurement days, hydraulic lift was evident only when the plant was wilted. This occurred when the lower ‘wet’ layer had been allowed to dry and then it was re-watered. At this time, the roots in the upper dry layer released water, increasing the soil water content in the centre of the root mass by 0.019 m3/m3 (increase from 0.121 m3/m3 to 0.140 m3/m3). The soil-water increase was similar to other values reported in the literature and show it to be small.


Sign in / Sign up

Export Citation Format

Share Document