Factors influencing salt and water movement near crystalline salts in relatively dry soil

Soil Research ◽  
1974 ◽  
Vol 12 (2) ◽  
pp. 77 ◽  
Author(s):  
DR Scotter

Crystalline salts were placed at one end of sealed tubes of initially uniformly wet soil. The effect of soil texture, the initial soil water content, temperature, and the particular salt used on the resulting water and salt distributions in the soil was studied. In all experiments using relatively dry soil a zone of water accumulation adjacent to the salt, and a zone of water depletion further away from the salt, developed. Dissolved salt moved into the wetter zone next to the salt. The rate at which salt dissolved and moved out into the soil was found to depend very strongly on the solubility and saturated solution vapour pressure of the salt used, and the initial soil water content. Soil temperature and texture were less important factors. In some experiments quite large amounts of water accumulated in the crystalline salt, apparently when adequate contact was not maintained between the salt and the soil as the salt dissolved.

Soil Research ◽  
1974 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
DR Scotter

When dry crystalline salt is placed in contact with relatively dry soil, water is found to accumulate in the soil immediately adjacent to the salt, and dissolved salt moves into this wetter region. A recent paper by Parlange presents a theory modelling the salt and water movement in such situations. To allow this theory to be checked against experiment, basic data on water potentials and water and salt diffusivities as functions of water content for the particular soil used are necessary. Such data, as well as data showing salt and water movement in soil near crystalline salt, are reported and used to check the Parlange theory. The theory is shown to have some limited success in predicting the salt movement into the soil, but to inadequately explain the water distribution in the wetter region adjacent to the crystalline salt. It is suggested that this failure is due to significant water movement in the vapour phase into the wetter soil, which is not accounted for in the theory.


1995 ◽  
Vol 46 (4) ◽  
pp. 821 ◽  
Author(s):  
GN Mundy

A 15N study with microplots was conducted to determine the effect of initial soil water content and of water application on the recovery of 15N-labelled urea applied at 60 kg N/ha to a paspalum-dominant pasture. A second experiment with the same pasture type investigated the effects of individual urea granules on soil pH and mineral nitrogen (N) after application to a moist soil with and without follow up rain and to wet soil without follow up rain. The 15N balance showed that initial soil water content and 10 mm of simulated rainfall affected the recovery of 15N in the soil/pasture. Fertilizer recovery was lowest (79%) from dry soil (evaporation minus rainfall (ER) 50 mm) without rainfall, but when the initial soil water (ER 25 mm) was higher, the recovery of fertilizer was greater. Simulated rainfall (10 mm) after urea application to the dry soil increased urea recovery to 90%. The recovery of applied 15 N was greater than 90% following the application of the urea to saturated soil (E-R 0 mm) and was comparable to the recommended procedure of irrigation after application. In experiment 2, the initial soil water content and follow up rain (10 mm) were important factors affecting soil pH and mineral N concentrations at urea granule sites after urea was applied to soil. Urea increased soil pH of granule sites to more than 8.5 in moist soil, but with 10 mm of rain or with wet soil, pH only reached 7.6. Similar effects with soil mineral N were also measured. The effects of these changes in pH and mineral N are discussed in relation to recovery of urea applied to pasture soil.


Irriga ◽  
1998 ◽  
Vol 3 (1) ◽  
pp. 6-12
Author(s):  
Reginaldo Ferreira Santos ◽  
Reimar Carlesso

INFLUÊNCIA DA TEXTURA E PROFUNDIDADE DO SOLO NA CALIBRAÇÃO DA SONDA DE NÊUTRONS   Reginaldo Ferreira SantosDepartamento de Engenharia Rural - UNESP, CP: 237 - CEP:18603 970, Botucatu, SP Reimar CarlessoDepartamento de. Engenharia da Universidade Federal de Santa Maria, - UFSM, Campus Universitário, CEP: 97119 900, Santa Maria - RS  1 RESUMO A sonda de nêutrons é um equipamento usado na determinação do conteúdo de água do solo baseado no espalhamento e atenuação de nêutrons rápidos. Para tanto, há necessidade de calibração no campo e, conseqüentemente, verificar a influência da textura e da profundidade do solo e determinar as curvas de calibração em relação ao conteúdo de umidade. O trabalho foi desenvolvido na Universidade Federal de Santa Maria em um conjunto de lisímetros, protegidos das precipitações pluviométricas com plástico transparente. Foram usados três solos de diferentes texturas e quatro repetições e em três profundidades (10, 30 e 50 cm) a partir da superfície do solo. Foram determinadas as equações de regressão lineares entre as contagens propiciadas pela sonda e o conteúdo de umidade do solo respectivos pelo método gravimétrico. Os resultados demonstraram que houve interferência da textura e da profundidade do solo, analisados conjuntamente, nas curvas de calibração, sendo que os valores observados e os estimados variaram entre 0,02 e 0,06 cm3/ cm3 do conteúdo de água do solo e os coeficientes de correlação foram 0,86, 0,95 e 0,89 para os solos de textura argilosa, franco-argilo-siltoso e franco-arenoso, respectivamente. Já para os fatores textura e profundidade dos solos, analisados separadamente, as diferenças entre os valores observados no campo e os estimados, variaram entre 0,0 e 0,02 cm31cm3 do conteúdo de água do solo e apresentaram coeficientes de correlação entre 0,97 e 1,0. UNITERMOS: sonda de nêutrons. umidade do solo. textura e profundidade do solo  SANTOS, R.F., CARLESSO, R. Soil texture and depth influence on the neutron probe calibration   2 SUMMARY  The neutron probe is an equipment used on determination of the soil water content, based on the fast neutron attenuation. Therefore, there is a calibration need in the field and, consequently, to verify the soil texture and depth influence for to determining the calibration curves in relation to the water content. The study was developed at Santa Maria's Federal University in a lisímeter group, protected from the rains with transparent plastic. Three different soil textures, three depths (10, 30 and 50 cm from the soil surface) and four replicates were used. Linear regression equations between neutron counts and soil water contents were made. The results showed that there was interference of the texture and depth of the soil, analyzed jointly, on the calibration curves, and the observed and estimated values varied from 0,02 to 0,06 cm3 / cm3 of the soil water content and the correlation coefficients were 0,86, 0,95 and 0,89 for clayay, franc-silt-clayay and franc-sandy, respectively. For soil texture and depth, analyzed separately, the differences among the values observed in the field and the estimated ones, varied from 0,0 to 0,02 cm3/cm3 soil water content and presented correlation coefficients between 0,97 and 1,0. KEYWORDS: neutron probe, soil water content, soil texture and depth.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 151 ◽  
Author(s):  
Grace Ray ◽  
Carlos G. Ochoa ◽  
Tim Deboodt ◽  
Ricardo Mata-Gonzalez

The effects of western juniper (Juniperus occidentalis) control on understory vegetation and soil water content were studied at the watershed-scale. Seasonal differences in topsoil (12 cm) water content, as affected by vegetation structure and soil texture, were evaluated in a 96-ha untreated watershed and in a 116-ha watershed where 90% juniper was removed in 2005. A watershed-scale characterization of vegetation canopy cover and soil texture was completed to determine some of the potential driving factors influencing topsoil water content fluctuations throughout dry and wet seasons for approximately one year (2014–2015). We found greater perennial grass, annual grass, and shrub cover in the treated watershed. Forb cover was no different between watersheds, and as expected, tree canopy cover was greater in the untreated watershed. Results also show that on average, topsoil water content was 1% to 3% greater in the treated watershed. The exception was during one of the wettest months (March) evaluated, when soil water content in the untreated watershed exceeded that of the treated by <2%. It was noted that soil water content levels that accumulated in areas near valley bottoms and streams were greater in the treated watershed than in the untreated toward the end of the study in late spring. This is consistent with results obtained from a more recent study where we documented an increase in subsurface flow residence time in the treated watershed. Overall, even though average soil water content differences between watersheds were not starkly different, the fact that more herbaceous vegetation and shrub cover were found in the treated watershed led us to conclude that the long-term effects of juniper removal on soil water content redistribution throughout the landscape may be beneficial towards restoring important ecohydrologic connections in these semiarid ecosystems of central Oregon.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Mark R. Williams ◽  
Oscar Coronel ◽  
Scott J. McAfee ◽  
Laura L. Sanders

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3441
Author(s):  
Jingyu Ji ◽  
Junzeng Xu ◽  
Yixin Xiao ◽  
Yajun Luan

The accurate monitoring of soil water content during the growth of crops is of great importance to improve agricultural water use efficiency. The Campbell model is one of the most widely used models for monitoring soil moisture content from soil thermal conductivities in farmland, which always needs to be calibrated due to the lack of adequate original data and the limitation of measurement methods. To precisely predict the water content of complex soils using the Campbell model, this model was evaluated by investigating several factors, including soil texture, bulk density and organic matter. The comparison of the R2 and the reduced Chi-Sqr values, which were calculated by Origin, was conducted to calibrate the Campbell model calculated. In addition, combining factors of parameters, a new parameter named m related to soil texture and the organic matter was firstly introduced and the original fitting parameter, E, was improved to an expression related to clay fraction and the organic matter content in the improved model. The soil data collected from both the laboratory and the previous literature were used to assess the revised model. The results show that most of the R2 values of the improved model are >0.95, and the reduced Chi-Sqr values are <0.01, which presents a better matching performance compared to the original. It is concluded that the improved model provides more accurate monitoring of soil water content for water irrigation management.


2018 ◽  
Vol 24 (6) ◽  
pp. 72
Author(s):  
Zena Kamil Rasheed ◽  
Maysoon Basheer Abid

The problem of water scarcity is becoming common in many parts of the world, to overcome part of this problem proper management of water and an efficient irrigation system are needed.  Irrigation with a buried vertical ceramic pipe is known as a very effective in the management of irrigation water.  The two- dimensional transient flow of water from a buried vertical ceramic pipe through homogenous porous media is simulated numerically using the HYDRUS/2D software.  Different values of pipe lengths and hydraulic conductivity were selected.  In addition, different values of initial volumetric soil water content were assumed in this simulation as initial conditions.  Different values of the applied head were assumed in this simulation as boundary conditions.  The results of this research showed that greater spreading occurs in the horizontal direction.  Increasing applied heads, initial soil water contents and pipe hydraulic conductivities, cause increasing the size of wetting patterns but in a few increases.  Also, the results showed that the empirical formulas which can be used for expressing the wetted width and depth in terms of applied head, initial soil water content, application time, pipe hydraulic conductivity, and pipe length, are good and can be used as design equations.        


2018 ◽  
Vol 13 (4) ◽  
pp. 164-173
Author(s):  
Zena Kamil Rasheed ◽  
Maysoon Basheer Abid

Problem of water scarcity is becoming common in many parts of the world.  Thus to overcome this problem proper management of water and an efficient irrigation systems are needed.  Irrigation with buried vertical ceramic pipe is known as a very effective in management of irrigation water.  The two- dimensional transient flow of water from a buried vertical ceramic pipe through homogenous porous media is simulated numerically using the software HYDRUS/2D to predict empirical formulas that describe the predicted results accurately.   Different values of pipe lengths and hydraulic conductivity were selected.  In addition, different values of initial volumetric soil water content were assumed in this simulation as initial conditions.  Different values of applied head were assumed in this simulation as a boundary conditions.  In general, a good agreement was obtained when comparing the predicted results with available measured values.  The results of this research showed that greater spreading occur in vertical direction.  Increasing applied heads, initial soil water contents, pipe hydraulic conductivities, cause increasing the size of wetting patterns.  Also the results showed that the empirical formulas which can be used for expressing the wetted width and depth in terms of applied head, initial soil water content, application time, pipe hydraulic conductivity, and pipe length, are good and can be used as a designing equations.  


Sign in / Sign up

Export Citation Format

Share Document