Potentially mineralizable nitrogen, decomposition rates and their relationship to temperature for five Queensland soils

Soil Research ◽  
1981 ◽  
Vol 19 (3) ◽  
pp. 323 ◽  
Author(s):  
CA Campbell ◽  
RJK Myers ◽  
KL Weier

The procedure of Stanford and coworkers was used to quantitatively relate net nitrogen mineralization in five Queensland semi-arid soils to temperature. The concentration of potentially mineralizable nitrogen (No) (1) ranged from 67 �g nitrogen g-1 for a red earth subsoil to 256 for a recently cultivated cracking clay surface soil, (2) was directly proportional to total soil carbon, (3) was greater in surface than in subsurface soil, and (4) was greater in subtropical than tropical soils. Expressed as a fraction of total nitrogen (No/Total N), it ranged between 8 and 21%, and was directly proportional to cation exchange capacity, perhaps implicating expanding lattice clays in stabilization of cell lysates and metabolites. The mineralization rate constant (k) was directly proportional to total carbon, the fuel for microbially mediated reactions in soil. The average k for surface soils was interpolated to be 0.058, 0.031, and 0.018 week-1, corresponding to half-lives of 11.9, 22.4 and 38.5 weeks, at 35�, 25� and 15�C, respectively; these values are similar to those reported for U.S.A. and Chilean soils. The Arrhenius relationship between k and temperature for surface soils (log k = 6.14-2285/T) was similar to that reported by Stanford for U.S.A. soils, and indicates that this relationship might be a general one.

1984 ◽  
Vol 64 (3) ◽  
pp. 333-343 ◽  
Author(s):  
C. A. CAMPBELL ◽  
Y. W. JAME ◽  
G. E. WINKLEMAN

There is a need to provide quantitative relationships that will allow agronomists to estimate accurately the nitrogen-supplying power of soils while taking into account both temperature and soil moisture variations. The procedure for estimating net nitrogen mineralization proposed by Stanford and co-workers was used to determine Arrhenius relationships between the rate constants (k) and absolute temperature (°K) for 33 virgin and cultivated Western Canadian prairie surface (0–15 cm) soils. There was no significant difference in Arrhenius relationship between soils within each soil zone; thus, a single average Arrhenius equation was calculated per soil zone. Average Q10 for the Brown chernozemic soils was 2.75, for the Dark Brown, thin Black and thick Black chernozems, 2.18, and for the Gray luvisols, 2.0. These Q10 values are as high or higher than those reported in other parts of the world and may be related to the degree of degradation of the soil organic matter in these various soils. Culture had no marked effect on Q10 but sandy soils had higher Q10 than loams and clays. An equation for estimating net nitrogen mineralization for the Wood Mountain loam (a Brown chernozem) was tested using data from a previous study. The results were quite satisfactory, especially when the test data were derived under laboratory conditions where moisture was well controlled. The temperature functions presented herein can be used together with moisture functions and potentially mineralizable nitrogen results published earlier to make first estimates of net nitrogen mineralized during the growing season in the soils tested. Key words: Q10, Arrhenius relationship, potentially mineralizable nitrogen


Soil Research ◽  
1981 ◽  
Vol 19 (1) ◽  
pp. 93 ◽  
Author(s):  
GP Gillman

The cation exchange capacity of six surface soils from north Queensland and Hawaii has been measured over a range of pH values (4-6) and ionic strength values (0.003-0.05). The results show that for variable charge soils, modest changes in electrolyte ionic strength are as important in their effect on caton exchange capacity as are changes in pH values.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Tope O. Bolanle-Ojo ◽  
Abiodun D. Joshua ◽  
Opeyemi A. Agbo-Adediran ◽  
Ademola S. Ogundana ◽  
Kayode A. Aiyeyika ◽  
...  

Conducting binary-exchange experiments is a common way to identify cationic preferences of exchangeable phases in soil. Cation exchange reactions and thermodynamic studies of Pb2+/Ca2+, Cd2+/Ca2+, and Zn2+/Ca2+were carried out on three surface (0–30 cm) soil samples from Adamawa and Niger States in Nigeria using the batch method. The physicochemical properties studies of the soils showed that the soils have neutral pH values, low organic matter contents, low exchangeable bases, and low effective cation exchange capacity (mean: 3.27 cmolc kg−1) but relatively high base saturations (≫50%) with an average of 75.9%. The amount of cations sorbed in all cases did not exceed the soils cation exchange capacity (CEC) values, except for Pb sorption in the entisol-AD2 and alfisol-AD3, where the CEC were exceeded at high Pb loading. Calculated selectivity coefficients were greater than unity across a wide range of exchanger phase composition, indicating a preference for these cations over Ca2+. TheKeqvalues obtained in this work were all positive, indicating that the exchange reactions were favoured and equally feasible. These values indicated that the Ca/soil systems were readily converted to the cation/soil system. The thermodynamic parameters calculated for the exchange of these cations were generally low, but values suggest spontaneous reactions.


2005 ◽  
Vol 62 (6) ◽  
pp. 552-558 ◽  
Author(s):  
Adriel Ferreira da Fonseca ◽  
Luís Reynaldo Ferracciú Alleoni ◽  
Adolpho José Melfi ◽  
Célia Regina Montes

The addition of Na-rich anthropogenic residues to tropical soils has stimulated the scientific community to study the role of sodium in both the soil solution and the exchange complex. In this study, several different methods were used to calculate the concentration of exchangeable and soluble cations and this data was then used to establish correlations between the level of these cations and both the accumulation of various elements and the dry weight of maize grown in a greenhouse under different conditions. In the closed environments of the pots, the most suitable method for calculating the effective cation exchange capacity (ECEC) was the cation exchange capacity calculated by cations removed with barium chloride solution (CEC S). Then again, the actual cation exchange capacity (CEC A) should be measured by using Mg adsorption to prevent ionic force from influencing electric charges. A strong positive correlation was obtained between the concentrations of Na in the 1:2 soil:water extracts and the accumulation of Na in the maize plants, indicating saline or double acid extractors are not needed when monitoring the Na concentration only.


2016 ◽  
Vol 69 (1) ◽  
pp. 7813-7823 ◽  
Author(s):  
Harley Quinto Mosquera ◽  
Flavio Moreno Hurtado

Average annual precipitation (AAP) is one of the principal environmental factors that regulates processes in terrestrial ecosystems. The effect of AAP on the availability of edaphic nutrients is poorly understood, especially in tropical zones with high rainfall. In order to evaluate the effects of high AAP on the availability of soil N, P, and K, physicochemical parameters were measured in soils of three tropical rainforests in the Chocó biogeographical region with different AAPs (7,500, 8,000, and 10,000 mm yr-1). Furthermore, a bibliographical review was carried out that including studies for distinct tropical Ultisols and AAP ranging from 1,800 to 10,000 mm yr-1. The evaluated soils presented extreme acidity with high contents of Al, organic matter (OM) and total N, and low quantities of P, Mg, and Ca. The K concentrations were intermediate and the effective cation exchange capacity (ECEC) was low. On the other hand, in the evaluation of the influence of the AAP on the availability of N, P, and K in the soil, contrasting tendencies were observed. On one side, a positive curvilinear relationship was found between the availability of N and the increase in the AAP. On the other side, the available P content significantly decreased with increasing AAP. In conclusion, the excessive AAP resulted in increases in total N and low availability of P, thereby altering the dynamics of the nutrients and the carbon balance of the tropical forest


Soil Research ◽  
1990 ◽  
Vol 28 (4) ◽  
pp. 539 ◽  
Author(s):  
CJ Chartres ◽  
RW Cumming ◽  
JA Beattie ◽  
GM Bowman ◽  
JT Wood

Samples were collected from unimproved road reserves and adjacent paddocks on a 90 km transect crossing red-brown earth soils in the west and red earth soils in the east. Measurements of pH in water and CaCl2 indicated that the red earths have been acidified by approximately 0.5 pH units over the last 30-40 years. Small increases in CaCl2-extractable A1 were also recorded for the acidified red earths. The red-brown earths do not appear to have been markedly affected by soil acidification to date. Clay mineralogical data and measurements of cation exchange capacity of the <2 �m fraction indicate that red-brown earths are better buffered against acidification than red earths. However, small differences in management practices and rainfall along the transect may also be partially responsible for differences in acidification between soil types.


Sign in / Sign up

Export Citation Format

Share Document