Landscape structural features control fire size in a Mediterranean forested area of central Spain

2009 ◽  
Vol 18 (5) ◽  
pp. 575 ◽  
Author(s):  
Olga Viedma ◽  
D. G. Angeler ◽  
José M. Moreno

Landscape structure may affect fire propagation and fire size. Propagation may be favoured in landscapes that are homogeneous and hindered at places of greater heterogeneity, and where discontinuities occur. We tested whether there is continuity in landscape structure across the edges of 110 fires in the Sierra de Gredos (central Spain). We used Landsat Multispectral Scanner images to map and assess the land-cover composition and other features of fires. Landscape diversity along the pixel row of the fire edge and of the two adjacent ones (burned and unburned) was compared for all fires. Additionally, changes in landscape properties and fuel hazard perpendicular to the fire edge evaluated the degree of discontinuity from inside the burn towards the outside across the edge. Fire size was related to landscape properties and weather conditions using generalized linear regression models. Diversity increased from inside the burn towards the edge and outside the burn. Discontinuity in land-cover types and fuel hazard increased from the inside towards the outside. Modelling confirmed that fire size was in part related to landscape characteristics of the burned area and of the edges of the fire perimeter. We conclude that landscape structure was important in determining fire size in this area.


2006 ◽  
Vol 33 (3) ◽  
pp. 212-222 ◽  
Author(s):  
OLGA VIEDMA ◽  
JOSÉ M. MORENO ◽  
IGNACIO RIEIRO

In fire-prone areas, like the Mediterranean, land abandonment and forestation may interact with fire to alter landscape properties and eventually fire hazard and occurrence. However, the spatial interactions among the two processes (land-use/land cover change [LULC] and fire) are poorly known. Here, we analysed the relative effect of LULC change and fire on the landscape structure of an area of Central Spain frequently affected by fire. A series of Landsat MSS images from 1975 to 1990 was analysed to quantify annual changes in LULC, map fire perimeters and evaluate the changes in landscape properties. The temporal dynamics were analysed by annually computing the fraction occupied by each LULC type and landscape structural properties (number, size, shape and arrangement of patches) that might play a role in fire propagation. All of these were calculated separately for the unburned or the burned areas during the study period, as well as for the entire area. At the whole landscape level, or in the unburned area, LULC changes were small, yet the two more flammable LULC types tended to increase, and the landscape tended to become more homogeneous. In the burned area, the area covered by pine woodlands tended to decrease, and that covered by shrublands to increase. Burned areas turned into shrublands only five years after fire. Landscape indices indicative of reduced fragmentation were also found. Both LULC change and fire altered landscape patterns in the whole area to create a less fragmented and more contiguous landscape than in 1975. The changes induced in the whole landscape by fire, in spite of the overall low disturbance rate, were sufficient to closely determine the changes in landscape composition (LULC types) and patterns.



2010 ◽  
Vol 19 (8) ◽  
pp. 1099 ◽  
Author(s):  
Christelle Hély ◽  
C. Marie-Josée Fortin ◽  
Kerry R. Anderson ◽  
Yves Bergeron

Wildfire simulations were carried out using the Prescribed Fire Analysis System (PFAS) to study the effect of landscape composition on fire sizes in eastern Canadian boreal forests. We used the Lake Duparquet forest as reference, plus 13 forest mosaic scenarios whose compositions reflected lengths of fire cycle. Three fire weather risks based on duff moisture were used. We performed 100 simulations per risk and mosaic, with topography and hydrology set constant for the reference. Results showed that both weather and landscape composition significantly influenced fire sizes. Weather related to fire propagation explained almost 79% of the variance, while landscape composition and weather conditions for ignition explained ∼14 and 2% respectively. In terms of landscape, burned area increased with increasing presence of shade-tolerant species, which are related to long fire cycles. Comparisons among the distributions of cumulated area burned from scenarios plus those from the Société de Protection des Forêts contre le Feu database archives showed that PFAS simulated realistic fire sizes using the 80–100% class of probable fire extent. Future analyses would best be performed on a larger region as the limited size of the study area could not capture fires larger than 11 000 ha, which represent 3% of fires but 65% of the total area burned at the provincial scale.



2013 ◽  
Vol 43 (5) ◽  
pp. 493-506 ◽  
Author(s):  
Elena A. Kukavskaya ◽  
Amber J. Soja ◽  
Alexander P. Petkov ◽  
Evgeni I. Ponomarev ◽  
Galina A. Ivanova ◽  
...  

Boreal forests constitute the world's largest terrestrial carbon pools. The main natural disturbance in these forests is wildfire, which modifies the carbon budget and atmosphere, directly and indirectly. Wildfire emissions in Russia contribute substantially to the global carbon cycle and have potentially important feedbacks to changing climate. Published estimates of carbon emissions from fires in Russian boreal forests vary greatly depending on the methods and data sets used. We examined various fire and vegetation products used to estimate wildfire emissions for Siberia. Large (up to fivefold) differences in annual and monthly area burned estimates for Siberia were found among four satellite-based fire data sets. Official Russian data were typically less than 10% of satellite estimates. Differences in the estimated proportion of annual burned area within each ecosystem were as much as 40% among five land-cover products. As a result, fuel consumption estimates would be expected to vary widely (3%–98%) depending on the specific vegetation mapping product used and as a function of weather conditions. Verification and validation of burned area and land-cover data sets along with the development of fuel maps and combustion models are essential for accurate Siberian wildfire emission estimates, which are central to balancing the carbon budget and assessing feedbacks to climate change.



2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolfazl Mohammadbeigi ◽  
Salman Khazaei ◽  
Hamidreza Heidari ◽  
Azadeh Asgarian ◽  
Shahram Arsangjang ◽  
...  

AbstractObjectivesLeishmaniasis is a neglected and widespread parasitic disease that can lead to serious health problems. The current review study aimed to synthesize the relationship between ecologic and environmental factors (e.g., weather conditions, climatology, temperature and topology) and the incidence of cutaneous leishmaniasis (CL) in the Old World.ContentA systematic review was conducted based on English, and Persian articles published from 2015 to 2020 in PubMed/Medline, Science Direct, Web of Science and Google Scholar. Keywords used to search articles were leishmaniasis, environmental factors, weather condition, soil, temperature, land cover, ecologic* and topogr*. All articles were selected and assessed for eligibility according to the titles or abstracts. The quality screening process of articles was carried out by two independent authors. The selected articles were checked according to the inclusion and exclusion criteria.Summary and outlookA total of 827 relevant records in 2015–2020 were searched and after evaluating the articles, 23 articles met the eligibility criteria; finally, 14 full-text articles were included in the systematic review. Two different categories of ecologic/environmental factors (weather conditions, temperature, rainfall/precipitation and humidity) and land characteristics (land cover, slope, elevation and altitude, earthquake and cattle sheds) were the most important factors associated with CL incidence.ConclusionsTemperature and rainfall play an important role in the seasonal cycle of CL as many CL cases occurred in arid and semiarid areas in the Old World. Moreover, given the findings of this study regarding the effect of weather conditions on CL, it can be concluded that designing an early warning system is necessary to predict the incidence of CL based on different weather conditions.







2021 ◽  
Author(s):  
Joana Nogueira ◽  
Julia Rodrigues ◽  
Jan Lehmann ◽  
Hanna Meyer ◽  
Renata Libonati

<p>Fire events on a landscape scale are a widespread global phenomenon that influences the interactions between atmosphere and biosphere. Global burned area (BA) products derived from satellite images are used in dynamic vegetation fire modules to estimate greenhouse gas emissions, available fuel biomass and anthropic factors driving fire spread. Fire size and shape complexity from individual fire events can provide better estimates of fuel consumption, fire intensity, post fire vegetation recovery and their effects on landscape changes to better understand regional fire dynamics. Especially in the Brazilian savannas (Cerrado), a mosaic of heterogeneous vegetation where has prevailed an official “zero-fire” policy for decades leading to an increase in large wildfires, intensified also by rapid changes of land use using fire to land clearing in agriculture and livestock purposes. In this way, we aim to assess the fire size and shape patterns in Cerrado from 2013 to 2015, identifying each fire patch event from Landsat BA product and calculating its fire features with landscape metrics. We calculated its surface area to evaluate fire size and the metrics of shape index, core area and eccentricity from an ellipse fitting from burned pixels to estimate the fire shape complexity. The study focused on 48 Landsat path/row scenes and the analysis final compared the fire features of overlapped patches between the years. The total number of coincident fire patches is higher between the years 2013 and 2015 than 2013-2014 and 2014-2015. Large fires are found in the north and east regions for all comparisons. In this region, high core area values are consistent for having large areas of burnt patches and low shape index values and more elongated patches revealed a low fire shape complexity. These results demonstrate a greater burned area in the north, where the remaining native vegetation and less fragmented landscapes allow the fire to spread, when associated with favorable meteorological conditions. However, with the implementation of a new agricultural frontier in 2015, this region is under greater anthropic pressure with positive trends to land use. In the south, the fire shapes are already more complex and smaller because they are from agricultural areas historically developed, and consequently the landscape is more fragmented. Our results demonstrate a distinct spatial pattern of fire shape and size in Cerrado related to fragmentation of landscape and fire use to land cleaning. This information can help the modelling estimates of fire spread processes driven by topography, orientation of watersheds or dominant winds at local level, contributing to understanding the feedback with land cover/use, climate and biophysical characteristics at regional level to develop strategies for fire management.</p><p><strong>Acknowledges:</strong> J.N is funded by the 'Women in Research'-fellowship program (WWU Münster) and within the context of BIOBRAS Project “Research-based learning in neglected biodiverse ecosystems of Brazil”; funding by DAAD (number 57393735); validation dataset was performed under the Andurá project (number 441971/2018–0) funding by CNPq</p>



Author(s):  
R. S. Bhowmick ◽  
A. Kumar ◽  
G. D. Singh ◽  
S. Kumar

<p><strong>Abstract.</strong> Remote sensing data and satellite images are broadly used for land cover information. There are so many challenges to classify pixels on the basis of features and characteristics. Generally it is pixel classification that required the count of pixels for certain area of interest. In the proposed model, we are applying unsupervised machine learning to classify the content of the input images on the basis of pixels intensity. The study aims to compare classification accuracy of different landscape characteristics like water, forest, urban, agricultural areas, transport network and other classes adapted from CORINE (Coordination of information on the environment) nomenclature. To fulfil the aim of the model, accessing data from Google map using Google static API service which creates a map based on URL parameters sent through a standard HTTP (Hyper Text Transfer Protocol) request and returns the map as an image which can be display on any graphical user interface platform. The Google Static Maps API returns an image either in GIF, PNG or JPEG format in response to an HTTP request. To identify different land cover/use classes using k-means clustering. The model is dynamic in nature that describes the clustering as well formulate the area of the concerned class or clustered fields.</p>



FLORESTA ◽  
2020 ◽  
Vol 50 (4) ◽  
pp. 1808
Author(s):  
Lucas De Siqueira Cardinelli ◽  
José Marinaldo Gleriani ◽  
Sebastião Venâncio Martins

The aim of this study is to evaluate land cover dynamics and landscape structure in the area surrounding two water reservoirs built-in 2009 for energy production, in the mountainous region of the State of Rio de Janeiro (Serra Fluminense). The analysis was developed through the interpretation of Landsat images from 2003, 2009, and 2013, considering the following land cover classes: early successional forest, mid successional forest, pasture, pasture with shrubs and trees, geological outcrop, urban area, and water area. We used thematic maps to determine landscape metrics of size and proximity in the reservoirs catchment area and the Permanent Preservation Area (PPA). At catchment level, pasture was predominant, a consequence of the extensive livestock production carried out in the whole watershed. During the evaluated period, the forest area remained consistent, however, fragmented in many small patches of mid successional forest. The average patch area of mid successional forest is three times the size of the early successional forest patches. For neither forest land cover classes, no significant variations through time in area or isolation were identified. On the PPA, an overall reduction of the forest cover was registered before the construction of the reservoir. However, from 2009 to 2013, after the enclosure of PPA areas, the forest cover increased 35% via assisted natural regeneration, suggesting a high potential for cost-effective restoration in the region.



Sign in / Sign up

Export Citation Format

Share Document