Emerging epidemiological patterns in rabbit haemorrhagic disease, its interaction with myxomatosis, and their effects on rabbit populations in South Australia

2002 ◽  
Vol 29 (6) ◽  
pp. 577 ◽  
Author(s):  
Gregory Mutze ◽  
Peter Bird ◽  
John Kovaliski ◽  
David Peacock ◽  
Scott Jennings ◽  
...  

The impact of rabbit haemorrhagic disease (RHD) on wild rabbit populations was assessed by comparing population parameters measured before the introduction of RHD into Australia in 1995 with population parameters after RHD. We used data from an arid inland area and a moist coastal area in South Australia to examine the timing and extent of RHD outbreaks, their interaction with myxomatosis and their effect on breeding, recruitment and seasonal abundance of rabbits. From this we propose a generalised conceptual model of how RHD affects rabbit populations in southern Australia. RHD decreased long-term average numbers of rabbits by 85% in the arid area. In the coastal area, RHD decreased numbers of rabbits by 73% in the first year but numbers gradually recovered and were only 12% below pre-RHD numbers in the third year. Disease activity generally begins a month or two after the commencement of breeding in autumn or winter, peaks in early spring and ceases to be apparent in summer. Where the disease is most active, the pattern of population change is almost the inverse of the former pattern. During the breeding season, RHD severely suppresses rabbit numbers. Compensatory recruitment of late-born young, protected by maternal antibodies until the disease becomes inactive at the end of spring (also the end of breeding), allows the observed rabbit abundance to increase during summer, albeit to lower levels than before RHD. Maternal antibodies are lost during summer and the population becomes susceptible to RHD. The seasonal peak in myxomatosis activity is pushed back from late spring to early summer or autumn. Survivors of myxomatosis breed after opening rains in autumn but many succumb to RHD before raising their litters. The reduced abundance of rabbits and changed pattern of seasonal abundance have potential consequences for vegetation recovery.


2004 ◽  
Vol 31 (6) ◽  
pp. 651
Author(s):  
G. Story ◽  
J. Scanlan ◽  
R. Palmer ◽  
D. Berman

Rabbit haemorrhagic disease virus (RHDV) escaped from quarantine facilities on Wardang Island in September 1995 and spread through South Australia to Queensland by December 1995. To determine the impact of this biological control agent on wild rabbit populations in Queensland, shot sample and spotlight count data were collected at six sites. RHDV spread across Queensland from the south-west to the east at a rate of at least 91 km month–1 between October 1995 and October 1996. The initial impact on rabbit density appeared highly variable, with an increase of 81% (255 ± 79 (s.e.) to 385 ± 73 rabbits km–2) at one site and a decrease of 83% (129 ± 27 to 22 ± 18 rabbits km–2) at another during the first outbreak. However, after 30 months of RHDV activity, counts were at least 90% below counts conducted before RHDV arrived. Using a population model to account for environmental conditions, the mean suppression of rabbit density caused by rabbit haemorrhagic disease (RHD) was estimated to be 74% (ranging from 43% to 94% between sites). No outbreaks were observed when the density of susceptible rabbits was lower than 12 km–2. Where rabbit density remains low for long periods RHDV may not persist. This is perhaps most likely to occur in the isolated populations towards the northern edge of the range of rabbits in Australia. RHDV may have to be reintroduced into these populations. Further south in areas more suitable for rabbits, RHDV is more likely to persist, resulting in a high density of immune rabbits. In such areas conventional control techniques may be more important to enhance the influence of RHD.



2004 ◽  
Vol 31 (2) ◽  
pp. 183 ◽  
Author(s):  
G. Story ◽  
D. Berman ◽  
R. Palmer ◽  
J. Scanlan

Rabbit haemorrhagic disease virus (RHDV) escaped from quarantine facilities on Wardang Island in September 1995 and spread through South Australia to Queensland by December 1995. To determine the impact of this biological control agent on wild rabbit populations in Queensland, shot sample and spotlight count data were collected at six sites. RHDV spread across Queensland from the south-west to the east at a rate of at least 91 km month–1 between October 1995 and October 1996. The initial impact on rabbit density appeared highly variable, with an increase of 81% (255 ± 79 (s.e.) to 385 ± 73 rabbits km–2) at one site and a decrease of 83% (129 ± 27 to 22 ± 18 rabbits km–2) at another during the first outbreak. However, after 30 months of RHDV activity, counts were at least 90% below counts conducted before RHDV arrived. Using a population model to account for environmental conditions, the mean suppression of rabbit density caused by rabbit haemorrhagic disease (RHD) was estimated to be 74% (ranging from 43% to 94% between sites). No outbreaks were observed when the density of susceptible rabbits was lower than 12 km–2. Where rabbit density remains low for long periods RHDV may not persist. This is perhaps most likely to occur in the isolated populations towards the northern edge of the range of rabbits in Australia. RHDV may have to be reintroduced into these populations. Further south in areas more suitable for rabbits, RHDV is more likely to persist, resulting in a high density of immune rabbits. In such areas conventional control techniques may be more important to enhance the influence of RHD.



2018 ◽  
Vol 182 (20) ◽  
pp. 574-574 ◽  
Author(s):  
Greg Mutze ◽  
Nicki De Preu ◽  
Trish Mooney ◽  
Dylan Koerner ◽  
Darren McKenzie ◽  
...  

Lagovirus europaeus GI.2, also commonly known as rabbit haemorrhagic disease virus 2, was first detected at two long-term monitoring sites for European rabbits, Oryctolagus cuniculus, in South Australia, in mid-2016. Numbers of rabbits in the following 12–18 months were reduced to approximately 20 per cent of average numbers in the preceding 10 years. The impact recorded at the two South Australian sites, if widespread in Australia and persistent for several years, is likely to be of enormous economic and environmental benefit.



2002 ◽  
Vol 29 (6) ◽  
pp. 605 ◽  
Author(s):  
Glen Saunders ◽  
Barry Kay ◽  
Greg Mutze ◽  
David Choquenot

Rabbit haemorrhagic disease (RHD) may be the most important rabbit control agent to be made available to graziers in Australia since the advent of myxomatosis. Documenting the benefits of RHD to agricultural production values is an important process in determining best-practice strategies for the use of the disease in controlling rabbit populations. In this paper we review previous studies on the impact of rabbits and present recent Australian case studies that tracked the effects of RHD on agricultural production as the disease first spread across the continent. Indirect consequences of RHD, such as changes in costs of rabbit control as monitored through the use of 1080 (sodium monofluoroacetate), are reported. Potential negative impacts such as adverse effects on the wild rabbit fur and meat trade and in the spread of woody weeds are also discussed.



2002 ◽  
Vol 29 (6) ◽  
pp. 615 ◽  
Author(s):  
C. Holden ◽  
G. Mutze

The impact of rabbit haemorrhagic disease (RHD) on the population dynamics and diet of foxes and feral cats was studied in the Flinders Ranges, South Australia. Populations of both foxes and cats decreased substantially some 6–10 months after the advent of RHD, when rabbit numbers were reduced by 85%. The diet of foxes changed as a result of reduced rabbit numbers, with much less rabbit and more invertebrates and carrion being eaten. The physical condition of foxes showed little change after RHD. The diet of cats did not change markedly, but their physical condition was substantially poorer than before RHD. Total predation on native fauna is considered to have decreased after RHD.



2010 ◽  
Vol 37 (4) ◽  
pp. 311 ◽  
Author(s):  
Greg Mutze ◽  
Ron Sinclair ◽  
David Peacock ◽  
John Kovaliski ◽  
Lorenzo Capucci

Context. European rabbits are serious environmental and agricultural pests throughout their range in Australia. Rabbit haemorrhagic disease virus (RHDV) greatly reduced rabbit numbers in arid central Australia but had less impact in cooler, higher-rainfall areas. RHDV-like benign caliciviruses (bCVs) have been implicated in limiting the impact of RHDV in the higher-rainfall regions of Australia and also in Europe. Aims. Experimental releases of RHDV on bait were tested as a means of initiating disease outbreaks. Serological evidence of antibodies to bCVs was examined to determine whether they reduce mortality rates and/or spread of the released RHDV, and how that might influence the effectiveness of future RHDV releases for rabbit management. Methods. Four experimental releases were conducted in high-rainfall and coastal regions of southern Australia. Virus activity was implied from recapture rates and serological changes in marked rabbits, and genetic sequencing of virus recovered from dead rabbits. Changes in rabbit abundance were estimated from spotlight transect counts. Key results. Release of RHDV on bait produced disease outbreaks that challenged almost all animals within the general release area and spread up to 4 km beyond the release sites. Recapture rates were high in marked rabbits that possessed antibodies from previous exposure to RHDV and extremely low amongst rabbits that lacked any detectable antibodies. Rabbits carrying antibodies classified as being due to previous infection with bCVs had recapture rates that were dependent on circulating antibody titre and were ~55% of recapture rates in rabbits with clear antibodies to RHDV. Conclusions. This is the first quantified evidence that antibodies produced against bCVs provide significant protection against RHD outbreaks in field populations of rabbits. Implications. bCVs can greatly reduce the impact of RHDV on wild-rabbit populations in Australia and presumably elsewhere. RHDV can be effectively released on bait although further releases are likely to be of minor or inconsistent benefit for controlling rabbit numbers where bCVs are common.



2014 ◽  
Vol 60 (3) ◽  
pp. 489-499 ◽  
Author(s):  
G. J. Mutze ◽  
R. G. Sinclair ◽  
D. E. Peacock ◽  
L. Capucci ◽  
J. Kovaliski


2014 ◽  
Vol 41 (7) ◽  
pp. 552 ◽  
Author(s):  
G. Mutze ◽  
P. Bird ◽  
S. Jennings ◽  
D. Peacock ◽  
N. de Preu ◽  
...  

Context Recovery of Australian rabbit populations from the impact of rabbit haemorrhagic disease virus (RHDV) contrasts with more prolonged suppression of wild rabbits in Europe, and has been widely discussed in the scientific community, but not yet documented in formal scientific literature. The underlying causes of recovery remain unclear, but resistance to RHDV infection has been reported in laboratory studies of wild-caught rabbits. Aims We document numerical changes in two South Australian wild rabbit populations that were initially suppressed by RHDV, and examine serological data to evaluate several alternative hypotheses for the cause of recovery. Methods Rabbit numbers were assessed from spotlight transect counts and dung mass transects between 1991 and 2011, and age and RHDV antibody sero-prevalence were estimated from rabbits shot in late summer. Key results Rabbit numbers were heavily suppressed by RHDV between 1995 and 2002, then increased 5- to 10-fold between 2003 and 2010. During the period of increase, annual RHDV infection rates remained stable or increased slightly, average age of rabbits remained stable and annual rainfall was below average. Conclusions Rabbit populations recovered but neither avoidance of RHDV infection, gradual accumulation of long-lived RHD-immune rabbits, nor high pasture productivity were contributing factors. This leaves increased annual survival from RHDV infection as the most likely cause of recovery. Implications Previously documented evidence of resistance to RHDV infection may be of little consequence to post-RHD recovery in rabbit numbers, unless the factors that influence the probability of infection also shape the course of infection and affect survival of infected rabbits.



2017 ◽  
Author(s):  
Robyn N Hall ◽  
Jackie E. Mahar ◽  
Andrew J. Read ◽  
R Mourant ◽  
M Piper ◽  
...  

SummaryRabbit haemorrhagic disease virus(RHDV, or GI.1), is a calicivirus in the genusLagovirusthat has been widely utilised in Australia as a biological control agent for the management of overabundant wild European rabbit (Oryctolagus cuniculus) populations since 1996. Recently, two exotic incursions of pathogenic lagoviruses have been reported in Australia; GI.1a-Aus, previously called RHDVa-Aus, is a GI.1a virus detected in January 2014, and the novel lagovirus GI.2 (previously known as RHDV2). Furthermore, an additional GI.1a strain, GI.1a-K5 (also known as 08Q712), was released nationwide in March 2017 as a supplementary tool for wild rabbit management. To discriminate between these lagoviruses, a highly sensitive strain-specific multiplex RT-PCR assay was developed, which allows fast, cost-effective, and sensitive detection of the four pathogenic lagoviruses currently known to be circulating in Australia. In addition, we developed a universal qRT-PCR assay to be used in conjunction with the multiplex assay that broadly detects all four viruses and facilitates quantification of viral RNA load in samples. These assays enable rapid detection, identification, and quantification of pathogenic lagoviruses in the Australian context. Using these assays, a novel recombinant lagovirus was detected in rabbit tissues samples, which contained the non-structural genes of GI.1a-Aus and the structural genes of GI.2. This variant was also recovered from the liver of a European brown hare (Lepus europaeus). The impact of this novel recombinant on Australian wild lagomorph populations and its competitiveness in relation to circulating field strains, particularly GI.2, requires further studies.



2015 ◽  
Vol 12 (103) ◽  
pp. 20141184 ◽  
Author(s):  
Konstans Wells ◽  
Barry W. Brook ◽  
Robert C. Lacy ◽  
Greg J. Mutze ◽  
David E. Peacock ◽  
...  

Infectious diseases can exert a strong influence on the dynamics of host populations, but it remains unclear why such disease-mediated control only occurs under particular environmental conditions. We used 16 years of detailed field data on invasive European rabbits ( Oryctolagus cuniculus ) in Australia, linked to individual-based stochastic models and Bayesian approximations, to test whether (i) mortality associated with rabbit haemorrhagic disease (RHD) is driven primarily by seasonal matches/mismatches between demographic rates and epidemiological dynamics and (ii) delayed infection (arising from insusceptibility and maternal antibodies in juveniles) are important factors in determining disease severity and local population persistence of rabbits. We found that both the timing of reproduction and exposure to viruses drove recurrent seasonal epidemics of RHD. Protection conferred by insusceptibility and maternal antibodies controlled seasonal disease outbreaks by delaying infection; this could have also allowed escape from disease. The persistence of local populations was a stochastic outcome of recovery rates from both RHD and myxomatosis. If susceptibility to RHD is delayed, myxomatosis will have a pronounced effect on population extirpation when the two viruses coexist. This has important implications for wildlife management, because it is likely that such seasonal interplay and disease dynamics has a strong effect on long-term population viability for many species.



Sign in / Sign up

Export Citation Format

Share Document