Biogeography of butterflies in the Australian monsoon tropics

2008 ◽  
Vol 56 (1) ◽  
pp. 41 ◽  
Author(s):  
Michael F. Braby

The biogeography of butterflies within the monsoon tropical biome of northern Australia is reviewed in terms of patterns of species richness, endemism and area relationships. Available data indicate that the region supports a relatively rich fauna, comprising 265 species (~62% of the total Australian fauna), but endemism is low (6%). No genera are endemic to the monsoon tropics, but two (Neohesperilla, Nesolycaena) are characteristic components, embracing a total of seven species in the region, of which five are endemic. Three ecological specialists (Neohesperilla senta, Elodina walkeri, Candalides delospila), each associated with different vegetation types, appear to be characteristic elements of the monsoon tropics. Of 67 range-restricted species in the monsoon tropics, 15 (mostly associated with savanna) are endemic to the region, while 52 (mostly associated with rainforest) are non-endemic, occurring also in south-east Asia and/or mainland New Guinea. A pronounced attenuation in species richness from Cape York Peninsula across the Top End to the Kimberley is evident. Within the monsoon tropics, Cape York Peninsula stands out as an area of exceptional biodiversity, with 95% of the butterflies (251 species; 7 endemic species, 31 endemic subspecies/geographical forms) recorded from the entire region, compared with the Top End (123 species; 3 endemic species, 17 endemic subspecies/geographical forms). In contrast, the Kimberley has a comparatively depauperate fauna (85 species; 1 endemic species, 0 endemic subspecies) without strong Indonesian affinities, and contains only two range-restricted species. A sister-area relationship between Cape York Peninsula and the Top End–Kimberley is evident in one clade, Acrodipsas hirtipes (northern Cape York Peninsula) + A. decima (Top End), with a pairwise divergence of ~1% based on mtDNA, and is suspected in another, Nesolycaena medicea (southern Cape York Peninsula) and N. urumelia (Top End) + N. caesia (Kimberley); a further five species show similar sister-area relationships across the Carpentarian Gap but at the level of subspecies or geographical form. Three general and complementary hypotheses are proposed to explain patterns of geographical differentiation of butterflies in the monsoon tropics: (1) the Carpentarian Gap is a biogeographical filter, functioning as a barrier for some species but as a bridge for others; (2) divergence among taxa between Cape York Peninsula and the Top End–Kimberley has occurred fairly recently (Quaternary), probably through vicariance; and (3) the Bonaparte Gap, with the exception of Nesolycaena, is not a vicariant barrier for butterflies in the Top End and Kimberley.

2015 ◽  
Vol 39 (6) ◽  
pp. 985-994 ◽  
Author(s):  
Markus Gastauer ◽  
Marcos Eduardo Guerra Sobral ◽  
João Augusto Alves Meira-Neto

According to its owners, the Forest of Seu Nico (FSN) from the Viçosa municipality, Minas Gerais, Brazil, never has been logged and is therefore considered a primary forest. Nevertheless, the forest patch suffered impacts due to selective wood and non-timber extraction, fragmentation and isolation. Aim of this study was to test if the FSN, despite impacts, preserved characteristics of primary forests, which are elevated percentages of non-pioneer (>90%), animal-dispersed (>80 %), understory (>50%) and endemic species (~40%). For that, all trees with diameter at breast height equal or major than 3.2 cm within a plot of 100 x 100 m were identified. With 218 tree species found within this hectare, the FSN's species richness is outstanding for the region. The percentages of non-pioneer (92 %), animal-dispersed (85 %), understory (55 %) and endemic species (39.2 %) from the FSN fulfill the criteria proposed for primary forest. Therefore, we conclude that the FSN maintained its characteristics as a primary forest which highlights its importance for the conservation of biotic resources in the region, where similar fragments are lacking or not described yet.


2016 ◽  
Vol 16 (2) ◽  
Author(s):  
Carolina Moreno ◽  
Viviane G Ferro

Arctiinae are a species-rich subfamily of moth, with approximately 1,400 species in Brazil and 723 recorded in the Cerrado biome. A list of species of these moths was compiled during three years of sampling in four vegetation types within the Emas National Park. A total of 5,644 individuals belonging to 149 species were collected. About 67% of these species are new records for the Emas National Park, 31% for the State of Goiás and 9% for the Cerrado biome. Cerrado sensu stricto and semideciduous forests have higher species richness, followed by campo cerrado and campo sujo. The vegetation type with the highest number of exclusive species was the semideciduous forest, followed by cerrado sensu stricto, campo cerrado and campo sujo. The high species richness and the high proportion of new species records for Goiás and Cerrado reinforce the importance of the Emas National Park region as a center of diversity for this group of moths. The conservation of areas not yet cleared around the Park, including the creation of new protected areas, and the establishment of ecological corridors between these areas and the Park would be strategies to preserve the fauna of these moths.


2005 ◽  
Vol 27 (2) ◽  
pp. 225 ◽  
Author(s):  
EG Ritchie

THE eastern grey kangaroo (Macropus giganteus) is one of Australia?s widest-ranging large macropodids, occurring in open forests, woodlands, subalpine woodland, farmland, and semi-arid regions throughout most of eastern Australia (Menkhorst and Knight 2001). However current general accounts (e.g., Poole 1995, Menkhorst and Knight 2001) regard M. giganteus as being absent from the northern Cape York Peninsula.


<em>Abstract.</em>—We examined fish assemblage responses to urban intensity gradients in two contrasting metropolitan areas: Birmingham, Alabama (BIR) and Boston, Massachusetts (BOS). Urbanization was quantified by using an urban intensity index (UII) that included multiple stream buffers and basin land uses, human population density, and road density variables. We evaluated fish assemblage responses by using species richness metrics and detrended correspondence analyses (DCA). Fish species richness metrics included total fish species richness, and percentages of endemic species richness, alien species, and fluvial specialist species. Fish species richness decreased significantly with increasing urbanization in BIR (<em>r </em>= –0.82, <EM>P </EM>= 0.001) and BOS (<em>r </em>= –0.48, <EM>P </EM>= 0.008). Percentages of endemic species richness decreased significantly with increasing urbanization only in BIR (<em>r </em>= – 0.71, <EM>P </EM>= 0.001), whereas percentages of fluvial specialist species decreased significantly with increasing urbanization only in BOS (<em>r </em>= –0.56, <EM>P </EM>= 0.002). Our DCA results for BIR indicate that highly urbanized fish assemblages are composed primarily of largescale stoneroller <em>Campostoma oligolepis</em>, largemouth bass <em>Micropterus salmoides</em>, and creek chub <em>Semotilus atromaculatus</em>, whereas the highly urbanized fish assemblages in BOS are dominated by yellow perch <em>Perca flavescens</em>, bluegill <em>Lepomis macrochirus</em>, yellow bullhead <em>Ameiurus natalis</em>, largemouth bass, pumpkinseed <em>L. gibbosus</em>, brown bullhead <em>A. nebulosus</em>, and redfin pickerel <em>Esox americanus</em>. Differences in fish assemblage responses to urbanization between the two areas appear to be related to differences in nutrient enrichment, habitat alterations, and invasive species. Because species richness can increase or decrease with increasing urbanization, a general response model is not applicable. Instead, response models based on species’ life histories, behavior, and autecologies offer greater potential for understanding fish assemblage responses to urbanization.


1976 ◽  
Vol 16 (81) ◽  
pp. 532 ◽  
Author(s):  
RF Isbell ◽  
RK Jones ◽  
GP Gillman

Eleven complete profiles and an additional 112 surface soils of deep sandy yellow and red earths in the far northern part of Cape York Peninsula have been sampled for laboratory studies. Chemical analyses showed that these acid soils are very low in organic carbon, nitrogen, phosphorus, potassium, sulphur, copper, zinc, manganese, cobalt, exchangeable basic cations, and base saturation. They have relatively high contents of exchangeable aluminium. The variability of surface soil chemical properties is relatively low. Glasshouse experiments with Stylosanthes humilis cv. Gordon conducted on soils from the 11 profile sites showed responses to sulphur, potassium, zinc and lime on all soils and to copper on about half the sites. Considering the results of both the laboratory and glasshouse studies, it is suggested that responses to nitrogen, phosphorus, zinc and probably calcium and copper are likely in the field. Responses to sulphur may be transitory because of the presence of appreciable levels of phosphate-extractable sulphur at depth.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1330
Author(s):  
Michelle Knaggs ◽  
Samuel Haché ◽  
Scott E. Nielsen ◽  
Rhiannon F. Pankratz ◽  
Erin Bayne

Research Highlights: The effects of fire on birds in the most northern parts of the boreal forest are understudied. We found distinct differences in bird communities with increasing fire severity in two vegetation types with naturally different burn severity. The highest severity burns tended to have communities dominated by generalist species, regardless of the original vegetation type. Background and Objectives: Wildfire is the primary natural disturbance in the boreal ecosystems of northwestern Canada. Increased wildfire frequency, extent, and severity are expected with climate change in this region. In particular, the proportion of burns that are high severity and the area of peatlands burned are increasing, and how this influences birds is poorly understood. Materials and Methods: We quantified the effects of burn severity (low, moderate, and high severity) in uplands and peatlands on occupancy, density, richness, community composition, and functional diversity using point counts (n = 1158) from the first two years post-fire for two large fires in the Northwest Territories, Canada. Results: Burn severity had a significant effect on the occupancy and density of 86% of our focal species (n = 20). Responses to burn severity depended on vegetation type for four of the 18 species using occupancy and seven of the 18 using density, but were typically in a similar direction. Species richness and functional diversity were lower in areas of high severity burns than unburned areas and low severity burns in peatlands. Richness was not related to severity in uplands, but functional diversity was. Peatlands had higher species richness than uplands in all burn severities, but as burn severity increased the upland and peatland communities became more similar. Conclusions: Our results suggest that high severity burns in both vegetation types support five generalist species and two fire specialists that may benefit from alterations in vegetation structure as a result of climate induced changes to fire regimes. However, eight species avoided burns, particularly birds preferring peatlands, and are likely to be more susceptible to fire-driven changes to their habitat caused by climate change. Understanding the long-term risks to these species from climate change requires additional efforts that link fire to bird populations.


2009 ◽  
Vol 42 (1) ◽  
pp. 83-96 ◽  
Author(s):  
Chitra Bahadur BANIYA ◽  
Torstein SOLHØY ◽  
Yngvar GAUSLAA ◽  
Michael W. PALMER

AbstractThis study of elevation gradients of lichen species richness in Nepal aimed to compare distribution patterns of different life-forms, substratum affinities, photobiont types, and Nepalese endemism. Distribution patterns of lichens were compared with elevational patterns shown by a wide range of taxonomic groups of plants along the Nepalese Himalayan elevational gradient between 200–7400m. We used published data on the elevation records of 525 Nepalese lichen species to interpolate presence between the maximum and minimum recorded elevations, thereby giving estimates of lichen species richness at each 100-m elevational band. The observed patterns were compared with previously published patterns for other taxonomic groups. The total number of lichens as well as the number of endemic species (55 spp.) showed humped relationships with elevation. Their highest richness was observed between 3100–3400 and 4000–4100m, respectively. Almost 33% of the total lichens and 53% of the endemic species occurred above the treeline (>4300m). Non-endemic richness had the same response as the total richness. All growth forms showed a unimodal relationship of richness with elevation, with crustose lichens having a peak at higher elevations (4100–4200m) than fruticose and foliose lichens. Algal and cyanobacterial lichen richness, as well as corticolous lichen richness, all exhibited unimodal patterns, whereas saxicolous and terricolous lichen richness exhibited slightly bimodal relationships with elevation. The highest lichen richness at mid altitudes concurred with the highest diversity of ecological niches in terms of spatial heterogeneity in rainfall, temperature, cloud formation, as well as high phorophyte abundance and diversity implying large variation in bark roughness, moisture retention capacity, and pH. The slightly bimodal distributions of saxicolous and terricolous lichens were depressed at the elevational maximum of corticolous lichens.


Sign in / Sign up

Export Citation Format

Share Document