scholarly journals Domestication and growth hormone transgenesis cause similar changes in gene expression in coho salmon (Oncorhynchus kisutch)

2009 ◽  
Vol 106 (9) ◽  
pp. 3047-3052 ◽  
Author(s):  
R. H. Devlin ◽  
D. Sakhrani ◽  
W. E. Tymchuk ◽  
M. L. Rise ◽  
B. Goh
2000 ◽  
Vol 57 (5) ◽  
pp. 939-950 ◽  
Author(s):  
James A Hill ◽  
Anders Kiessling ◽  
Robert H Devlin

Transgenic coho salmon (Oncorhynchus kisutch) containing a growth hormone gene construct were compared with nontransgenic coho salmon in terms of gross anatomy, muscle cellularity, muscle enzyme activity, and differential gene expression. Transgenic fish were found to have significantly higher numbers of small-diameter muscle fibres in both the dorsal and lateral region of the somitic muscle, suggesting that they grow by greater rates of hyperplasia relative to slower growing nontransgenic fish. Higher levels of activity were found for phosphofructokinase and cytochrome oxidase in white muscle of the transgenic fish. This difference indicates a higher glycolytic and aerobic requirement in the muscle of transgenic fish. Subtractive hybridisation of muscle RNA of transgenic fish from control fish provided a library of cDNAs whose expression is upregulated in the transgenic fish. This library contains genes that may be involved in, or related to, both high growth rates and muscle hyperplasia. We have sequenced a number of fragments and have found a preponderance of myosin light chain 2 mRNAs, consistent with a putative high level of expression in the early stages of muscle fibre construction.


1976 ◽  
Vol 33 (7) ◽  
pp. 1585-1603 ◽  
Author(s):  
David A. Higgs ◽  
Edward M. Donaldson ◽  
Helen M. Dye ◽  
J. R. McBride

Groups of underyearling coho salmon (Oncorhynchus kisutch) were acclimated to 10 C well water and a photoperiod of 12 h L:12 h D. Excess ration (Oregon Moist Pellet) was presented daily. Doses of bovine growth hormone (5, 10, 20, 30, or 90 μg bGH/g body wt) and L-thyroxine (0.5, 5, or 30 μg T4/g) were administered over a period of 84 days (phase I) either by injection (via dorsal musculature or peritoneal cavity) or by hormone cholesterol implants into the muscle. Administration frequency of bGH and T4 was such (range 2 times/wk-1 time/3 wk) that fish theoretically received either 10 or 30 μg bGH/g per wk or 1 or 10 μg T4/g per wk. Control fish received either alkaline saline (pH 9.5) or a cholesterol pellet. After cessation of treatment the fish were observed for an additional 84 days (phase II). During phase I, growth rates (weight) for bGH fish (2.0–2.4% per day) and for T4 fish (0.97–1.1% per day) were significantly higher than those of control fish (0.42–0.59% per day). Among bGH fish, dorsal musculature injection (2 times/wk) was significantly more effective than intraperitoneal injection (1 time/2 wk).Increases in weight above control for bGH fish at 84 days ranged from 220 to 369%. Those for T4 fish extended from 47 to 78%. In phase II, control fish growth rates were higher (0.61–0.67% per day) than those for bGH fish (0.47–0.57% per day) and T4 fish (0.32–0.44% per day). Administration of bGH and T4 (high dose) caused a progressive decline in condition factor of fish from the control range. This trend was stopped and reversed in phase II.At 84 days, generally no significant differences were detected among groups for percentages of muscle water. However, some groups had significantly higher (bGH) and others lower (T4) percentages of muscle protein relative to those of control fish. Also, significant increases (T4) and decreases (bGH) in muscle lipid percentages were found. Hormone treatment altered the histological structure of the ovary, thyroid, exocrine (T4) and endocrine (bGH) pancreas, and somatotrop cells (T4) of the pituitary. A poor growth response was noted for two groups of coho administered bGH after acclimation to sea water.


2017 ◽  
Vol 95 (9) ◽  
pp. 633-643 ◽  
Author(s):  
J.S. Bystriansky ◽  
W.C. Clarke ◽  
M.M. Alonge ◽  
S.M. Judd ◽  
P.M. Schulte ◽  
...  

Growth hormone (GH) is involved in the parr–smolt transformation of salmonid fishes and is known to improve salinity tolerance. This study compared the capacity for seawater acclimation of GH transgenic coho salmon (Oncorhynchus kisutch (Walbaum, 1792)) to that of wild-type fish, allowing examination of responses to sustained (chronic) exposure to elevated GH. GH transgenic fish (GH TG) smolted 1 year in advance of wild-type salmon and showed a greater capacity to hypo-osmoregulate in seawater. As GH TG fish were much larger than the wild-type fish, a second experiment was conducted with three size-matched groups of coho salmon (a 1+-year-old wild-type group, a 1+-year-old ration-restricted GH TG group, and a 0+-year-old fully fed GH TG group). When size-matched, the effect of GH transgenesis was not as dramatic, but the feed-rationed TG1+ group exhibited smaller deviations in plasma ion and osmolality levels following seawater exposure than did the other groups, suggesting a somewhat improved hypo-osmoregulatory ability. These results support a role for GH in the development of seawater tolerance by salmonid fishes independent of fish size.


2008 ◽  
Vol 211 (24) ◽  
pp. 3879-3888 ◽  
Author(s):  
S. E. Temple ◽  
K. M. Veldhoen ◽  
J. T. Phelan ◽  
N. J. Veldhoen ◽  
C. W. Hawryshyn

Author(s):  
Stéphane Panserat ◽  
Biju Sam Kamalam ◽  
Jeanne Fournier ◽  
Elisabeth Plagnes-Juan ◽  
Krista Woodward ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document