scholarly journals PDGF-BB and TGF-β1 on cross-talk between endothelial and smooth muscle cells in vascular remodeling induced by low shear stress

2011 ◽  
Vol 108 (5) ◽  
pp. 1908-1913 ◽  
Author(s):  
Ying-Xin Qi ◽  
Jun Jiang ◽  
Xiao-Hua Jiang ◽  
Xiao-Dong Wang ◽  
Su-Ying Ji ◽  
...  
2004 ◽  
Vol 287 (4) ◽  
pp. G795-G802 ◽  
Author(s):  
John F. Kuemmerle ◽  
Karnam S. Murthy ◽  
Jennifer G. Bowers

We have shown that human intestinal smooth muscle cells produce IGF-I and IGF binding protein-3 (IGFBP-3). Endogenous IGF-I acts in autocrine fashion to stimulate growth of these cells. IGFBP-3 inhibits the binding of IGF-I to its receptor and thereby inhibits IGF-I-stimulated growth. In several carcinoma cell lines and some normal cells, IGFBP-3 regulates growth independently of IGF-I. Two mechanisms for this effect have been identified: IGFBP-3 can directly activate transforming growth factor-β (TGF-β) receptors or it can undergo direct nuclear translocation. The aim of the present study was to determine whether IGFBP-3 acts independently of IGF-I and to characterize the mechanisms mediating this effect in human intestinal smooth muscle cells. The direct effects of IGFBP-3 were determined in the presence of an IGF-I receptor antagonist to eliminate its IGF-I-dependent effects. Affinity labeling of TGF-β receptors (TGF-βRI, TGF-βRII, and TGF-βRV) with 125I-labeled TGF-β1 showed that IGFBP-3 displaced binding to TGF-βRII and TGF-βRV in a concentration-dependent fashion. IGFBP-3 stimulated TGF-βRII-dependent serine phosphorylation (activation) of both TGF-βRI and of its primary substrate, Smad2(Ser465/467). IGFBP-3 also caused IGF-I-independent inhibition of basal [3H]thymidine incorporation. The effects of IGFBP-3 on Smad2 phosphorylation and on smooth muscle cell proliferation were independent of TGF-β1 and were abolished by transfection of Smad2 siRNA. Immunoneutralization of IGFBP-3 increased basal [3H]thymidine incorporation, implying that endogenous IGFBP-3 inhibits proliferation. We conclude that endogenous IGFBP-3 directly inhibits proliferation of human intestinal smooth muscle cells by activation of TGF-βRI and Smad2, an effect that is independent of its effect on IGF-I-stimulated growth.


2011 ◽  
Vol 15 (8) ◽  
pp. 1695-1702 ◽  
Author(s):  
Guanghong Jia ◽  
Anshu Aggarwal ◽  
Amanuel Yohannes ◽  
Deepak M. Gangahar ◽  
Devendra K. Agrawal

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Daniel M DiRenzo ◽  
Xu Dong Shi ◽  
Lian-Wang Guo ◽  
K Craig Kent

Restenosis (neo-intimal hyperplasia) occurs in approximately 25-50% of patients undergoing arterial interventions, primarily due to the proliferation and migration of arterial smooth muscle cells (SMCs) into the peri-luminal area. Recently, Wnt/β-catenin signaling has been shown to promote SMC proliferation and enhance neo-intimal hyperplasia but its mechanism of activation is unclear. Interestingly, Wnt/β-catenin has been shown to be activated by TGFβ in mesenchymal stem cells and fibroblasts. We have shown that TGFβ and its downstream signaling protein, Smad3, are upregulated following vascular injury and that Smad3 overexpressing SMCs display enhanced proliferation, migration, and neo-intimal hyperplasia. These results led us to hypothesize that TGFβ, through Smad3, activates Wnt/β-catenin to regulate SMC behavior following arterial injury . In primary rat SMCs, TGFβ (5ng/mL) led to β-catenin activation and relocalization from the plasma membrane to the cytoplasm / nucleus within 24 hours. Furthermore, qRT-PCR results demonstrated that expression of Wnt11 (22 fold) and Wnt9a (3.9 fold) were significantly upregulated after 24 hours of TGFβ stimulation (p<0.05, n=3). In addition, 24 hours of TGFβ stimulation in SMCs overexpressing Smad3 (TGFβ/Smad3) further enhanced the gene expression of Wnt11 (>300 fold) and Wnt9a (14 fold) and also stimulated significant increases in Wnt2b (41 fold), Wnt5a (2.9 fold), and Wnt4 (3.2 fold) (p<0.05, n=3) as measured by qRT-PCR. Western blot results demonstrated that the combined TGFβ/Smad3 stimulation increased β-catenin protein levels, suggesting that TGFβ activates canonical Wnt signaling leading to stabilization of β-catenin protein. In normal rat carotid arteries, β-catenin protein was undetectable via immunohistochemistry but could be seen in SMCs of the vessel media at 3 days post-balloon angioplasty and in neo-intimal cells at 7 and 14 days. Smad3 was also expressed in neo-intimal cells at 7 and 14 days post-angioplasty suggesting that TGFβ, through Smad3, is responsible for Wnt/β-Catenin activation during vascular injury. In conclusion, this work describes a novel cross-talk in SMCs between TGFβ and Wnt signaling which may provide a viable target for future anti-restenotic treatments.


Sign in / Sign up

Export Citation Format

Share Document