scholarly journals 1208Deficiency of the six-transmembrane protein Stamp2 promotes hypoxia-induced pulmonary vascular remodeling and pulmonary hypertension via cross-talk between macrophages and smooth muscle cells

2018 ◽  
Vol 39 (suppl_1) ◽  
Author(s):  
M Batool ◽  
E M Berghausen ◽  
M Vantler ◽  
M Zierden ◽  
S Baldus ◽  
...  
2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Batool ◽  
E M Berghausen ◽  
M Zierden ◽  
M Vantler ◽  
S Baldus ◽  
...  

Abstract Background The six-transmembrane protein of prostate (Stamp2) is a potent anti-inflammatory player in adipocytes and also in macrophages. Stamp2's actions in these cells protects from diet-induced diabetes and from atherosclerosis mice. As chronic inflammation is a hallmark of pulmonary arterial hypertension (PH), we sought to investigate the role of Stamp2 in PH. Methods and results Morphometric analyses of small pulmonary arteries after 3 weeks of chronic hypoxia (10% O2) showed aggravated pulmonary vascular remodeling in Stamp2−/− mice as compared to WT, demonstrated by a significantly reduced number of non-muscularized vessels and higher extent of fully-muscularized vessels. Consequently, right ventricular systolic pressure (RVSP, Millar catheter via right jugular vein) was significantly higher in Stamp2−/− mice (33.4±0.7 mmHg vs. 30.3±1.4, p<0.05). As endothelial (EC) and smooth muscle cells (PASMC) are critical for remodeling processes in PH, the role of Stamp2 in these cells was explored. However, siRNA-mediated knock-down of Stamp2 in human microvascular EC had no effect on apoptotic susceptibility (CellDeath Detection ELISA), or release of IL-6 (qPCR). Furthermore, Stamp2-deficiency in isolated primary PASMC had no effect on proliferation (BrdU incorporation) and chemotaxis (modified Boyden chamber). As Stamp2 deficiency promotes higher expression of inflammatory cytokines (IL6, IL1b, MCP1, TNFa, CXCL12, qPCR) and increased numbers of CD68-positive cells in the lung, actions of Stamp2 in macrophages are potentially driving vascular remodeling in PH. To test this hypothesis, PASMC proliferation and chemotaxis were assessed in response to treatment with supernatants from primary thioglycolate-elicited peritoneal Stamp2−/− or WT-macrophages. These experiments revealed that supernatants from Stamp2−/− macrophages induced PASMC proliferation and chemotaxis significantly stronger, thus providing a link between inflammatory actions in Stamp2 deficiency and vascular remodeling. To gain further insights, a cytokine array was performed with supernatants from Stamp2−/− and WT-macrophages, revealing CXCL12 as the most relevant candidate. Experiments with neutralizing antibodies confirmed the role of CXCL12 in driving Stamp2's actions on vascular remodelling processes in PASMC. Importantly, Stamp2 expression (qPCR, western blot analyses) was significantly lower in the lung of humans with idiopathic PAH (IPAH), as well as in experimental PH in rats (monocrotalin, sugen/hypoxia) and in mice (hypoxia). Conclusions Stamp2 deficiency aggravates hypoxia-induced pulmonary vascular remodeling and pulmonary hypertension in mice. On the cellular level, actions of Stamp2 in macrophages drive vascular remodelling processes in smooth muscle cells via secreted factors such as CXCL12. The finding of decreased expression of Stamp2 in human and various experimental forms of PH points towards a general protective role of Stamp2.


2011 ◽  
Vol 108 (5) ◽  
pp. 1908-1913 ◽  
Author(s):  
Ying-Xin Qi ◽  
Jun Jiang ◽  
Xiao-Hua Jiang ◽  
Xiao-Dong Wang ◽  
Su-Ying Ji ◽  
...  

2017 ◽  
Vol 312 (1) ◽  
pp. L22-L31 ◽  
Author(s):  
Kazuyuki Tsujino ◽  
Nilgun Isik Reed ◽  
Amha Atakilit ◽  
Xin Ren ◽  
Dean Sheppard

The efficacy and feasibility of targeting transforming growth factor-β (TGFβ) in pulmonary fibrosis and lung vascular remodeling in systemic sclerosis (SSc) have not been well elucidated. In this study we analyzed how blocking TGFβ signaling affects pulmonary abnormalities in Fos-related antigen 2 (Fra-2) transgenic (Tg) mice, a murine model that manifests three important lung pathological features of SSc: fibrosis, inflammation, and vascular remodeling. To interrupt TGFβ signaling in the Fra-2 Tg mice, we used a pan-TGFβ-blocking antibody, 1D11, and Tg mice in which TGFβ receptor type 2 ( Tgfbr2) is deleted from smooth muscle cells and myofibroblasts (α-SMA-CreER; Tgfbr2 flox/flox). Global inhibition of TGFβ by 1D11 did not ameliorate lung fibrosis histologically or biochemically, whereas it resulted in a significant increase in the number of immune cells infiltrating the lungs. In contrast, 1D11 treatment ameliorated the severity of pulmonary vascular remodeling in Fra-2 Tg mice. Similarly, genetic deletion of Tgfbr2 from smooth muscle cells resulted in improvement of pulmonary vascular remodeling in the Fra-2 Tg mice, as well as a decrease in the number of Ki67-positive vascular smooth muscle cells, suggesting that TGFβ signaling contributes to development of pulmonary vascular remodeling by promoting the proliferation of vascular smooth muscle cells. Deletion of Tgfbr2 from α-smooth muscle actin-expressing cells had no effect on fibrosis or inflammation in this model. These results suggest that efforts to target TGFβ in SSc will likely require more precision than simply global inhibition of TGFβ function.


Author(s):  
Xuran Chu ◽  
Negah Ahmadvand ◽  
Jin-San Zhang ◽  
Werner Seeger ◽  
Saverio Bellusci ◽  
...  

Vascular remodeling is a prominent feature of pulmonary hypertension. This process involves increased muscularization of already muscularized vessels as well as neo-muscularization of non-muscularized vessels. The cell-of-origin of the newly formed vascular smooth muscle cells has been a subject of intense debate in recent years. Identifying these cells may have important clinical implications since it opens the door for attempts to therapeutically target the progenitor cells and/or reverse the differentiation of their progeny. In this context, the dominant model is that these cells derive from pre-existing smooth muscle cells that are activated in response to injury. In this mini review, we present the evidence that is in favor of this model and, at the same time, highlight other studies indicating that there are alternative cellular sources of vascular smooth muscle cells in pulmonary vascular remodeling.


2017 ◽  
Vol 313 (4) ◽  
pp. C380-C391 ◽  
Author(s):  
Zhengjiang Qian ◽  
Yanjiao Li ◽  
Jidong Chen ◽  
Xiang Li ◽  
Deming Gou

MicroRNAs (miRNAs) can regulate the proliferative status of pulmonary artery smooth muscle cells (PASMCs), which is a core factor modulating pulmonary vascular remodeling diseases, such as atherosclerosis and pulmonary arterial hypertension (PAH). Our previous work has shown that miR-4632, a rarely reported miRNA, is significantly downregulated in platelet-derived growth factor (PDGF)-BB-stimulated human pulmonary artery smooth muscle cells (HPASMCs), yet its cell function and the underlying molecular mechanisms remain to be elucidated. Here, we find that miR-4632 is highly expressed in HPASMCs and its expression significantly decreased in response to different stimuli. Functional studies revealed that miR-4632 inhibited proliferation and promoted apoptosis of HPASMCs but had no effects on cell contraction and migration. Furthermore, the cJUN was identified as a direct target gene of miR-4632, while knockdown of cJUN was necessary for miR-4632-mediated HPASMC proliferation and apoptosis. In addition, the downregulation of miR-4632 by PDGF-BB was found to associate with histone deacetylation through the activation of PDGF receptor/phosphatidylinositol 3′-kinase/histone deacetylase 4 signaling. Finally, the expression of miR-4632 was reduced in the serum of patients with PAH. Overall, our results suggest that miR-4632 plays an important role in regulating HPASMC proliferation and apoptosis by suppression of cJUN, providing a novel therapeutic miRNA candidate for the treatment of pulmonary vascular remodeling diseases. It also implies that serum miR-4632 has the potential to serve as a circulating biomarker for PAH diagnosis.


2015 ◽  
Vol 308 (8) ◽  
pp. C581-C593 ◽  
Author(s):  
Ruby A. Fernandez ◽  
Jun Wan ◽  
Shanshan Song ◽  
Kimberly A. Smith ◽  
Yali Gu ◽  
...  

Pulmonary arterial hypertension (PAH) is a progressive disease that, if left untreated, eventually leads to right heart failure and death. Elevated pulmonary arterial pressure (PAP) in patients with PAH is mainly caused by an increase in pulmonary vascular resistance (PVR). Sustained vasoconstriction and excessive pulmonary vascular remodeling are two major causes for elevated PVR in patients with PAH. Excessive pulmonary vascular remodeling is mediated by increased proliferation of pulmonary arterial smooth muscle cells (PASMC) due to PASMC dedifferentiation from a contractile or quiescent phenotype to a proliferative or synthetic phenotype. Increased cytosolic Ca2+ concentration ([Ca2+]cyt) in PASMC is a key stimulus for cell proliferation and this phenotypic transition. Voltage-dependent Ca2+ entry (VDCE) and store-operated Ca2+ entry (SOCE) are important mechanisms for controlling [Ca2+]cyt. Stromal interacting molecule proteins (e.g., STIM2) and Orai2 both contribute to SOCE and we have previously shown that STIM2 and Orai2, specifically, are upregulated in PASMC from patients with idiopathic PAH and from animals with experimental pulmonary hypertension in comparison to normal controls. In this study, we show that STIM2 and Orai2 are upregulated in proliferating PASMC compared with contractile phenotype of PASMC. Additionally, a switch in Ca2+ regulation is observed in correlation with a phenotypic transition from contractile PASMC to proliferative PASMC. PASMC in a contractile phenotype or state have increased VDCE, while in the proliferative phenotype or state PASMC have increased SOCE. The data from this study indicate that upregulation of STIM2 and Orai2 is involved in the phenotypic transition of PASMC from a contractile state to a proliferative state; the enhanced SOCE due to upregulation of STIM2 and Orai2 plays an important role in PASMC proliferation.


Sign in / Sign up

Export Citation Format

Share Document