scholarly journals Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis

2012 ◽  
Vol 109 (14) ◽  
pp. 5458-5463 ◽  
Author(s):  
E. Fernandez-Fueyo ◽  
F. J. Ruiz-Duenas ◽  
P. Ferreira ◽  
D. Floudas ◽  
D. S. Hibbett ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Ola Alessa ◽  
Yoshitoshi Ogura ◽  
Yoshiko Fujitani ◽  
Hideto Takami ◽  
Tetsuya Hayashi ◽  
...  

The pink-pigmented facultative methylotrophs (PPFMs), a major bacterial group found in the plant phyllosphere, comprise two genera: Methylobacterium and Methylorubrum. They have been separated into three major clades: A, B (Methylorubrum), and C. Within these genera, however, some species lack either pigmentation or methylotrophy, which raises the question of what actually defines the PPFMs. The present study employed a comprehensive comparative genomics approach to reveal the phylogenetic relationship among the PPFMs and to explain the genotypic differences that confer their different phenotypes. We newly sequenced the genomes of 29 relevant-type strains to complete a dataset for almost all validly published species in the genera. Through comparative analysis, we revealed that methylotrophy, nitrate utilization, and anoxygenic photosynthesis are hallmarks differentiating the PPFMs from the other Methylobacteriaceae. The Methylobacterium species in clade A, including the type species Methylobacterium organophilum, were phylogenetically classified into six subclades, each possessing relatively high genomic homology and shared phenotypic characteristics. One of these subclades is phylogenetically close to Methylorubrum species; this finding led us to reunite the two genera into a single genus Methylobacterium. Clade C, meanwhile, is composed of phylogenetically distinct species that share relatively higher percent G+C content and larger genome sizes, including larger numbers of secondary metabolite clusters. Most species of clade C and some of clade A have the glutathione-dependent pathway for formaldehyde oxidation in addition to the H4MPT pathway. Some species cannot utilize methanol due to their lack of MxaF-type methanol dehydrogenase (MDH), but most harbor an XoxF-type MDH that enables growth on methanol in the presence of lanthanum. The genomes of PPFMs encode between two and seven (average 3.7) genes for pyrroloquinoline quinone-dependent alcohol dehydrogenases, and their phylogeny is distinctly correlated with their genomic phylogeny. All PPFMs were capable of synthesizing auxin and did not induce any immune response in rice cells. Other phenotypes including sugar utilization, antibiotic resistance, and antifungal activity correlated with their phylogenetic relationship. This study provides the first inclusive genotypic insight into the phylogeny and phenotypes of PPFMs.


2016 ◽  
Vol 75 (1) ◽  
Author(s):  
Laksmita Prima SANTI ◽  
Lisdar Idwan SUDIRMAN ◽  
Didiek Hadjar GOENADI

SummaryFungal treatment by using white-rot fungito reduce a wide variety of herbicide com-pounds is a specialized bioremediation pro-cess. A laboratory experiment was conductedto determine the ability of Phanerochaetechrysosporium, Ceriporiopsis subvermispora,and Pleurocybella porrigens and seven white-rot fungi isolated from a native of tropicalenvironment to grow on yeast malt extractglucose (YMG) agar containing highconcentration of (I) 2,4-dichlorophenoxy aceticacid, (R) glyphosate, and (G) paraquat. Thedata indicated that P. chrysosporium couldgrow on YMG media containing 5000 ppm of(I) 2,4-D, whereas BPBPI 02/04 isolate onYMG 250 ppm of (R) glyphosate or (G)paraquat. Relative values of growth inhibitionof these fungi are 81.1; 27.8; and 50.0%respectively. Biodegradation capability ofherbicides by candidate inoculants in soil-sandmedia was also determined in greenhouseexperiment by using peanut, sorghum, corn,and Borreria alata as bio-indicators. Peanutand B. alata were found to be the bestresponsive seedlings as bio-indicator on thepresence of (I) 2,4-D herbicide in soil-sandmedia.RingkasanTeknologi bioremediasi dengan fungipelapuk putih (FPP) digunakan untuk me-reduksi sejumlah senyawa herbisida. Kegiatanpenelitian yang dilakukan di laboratoriumbertujuan untuk mengetahui kemampuan tum-buh Phanerochaete chrysosporium, Ceripo-riopsis subvermispora, dan Pleurocybellaporrigens serta tujuh isolat FPP yang diperolehdari lingkungan tropik secara in vitro padamedium agar yeast malt extract glucose(YMG) yang mengandung (I) 2,4-dikloro-fenoksi asam asetat, (R) glifosat, dan (G)parakuat konsentrasi tinggi. Dari data yangdiperoleh, diketahui bahwa Ph. chrysosporiummemiliki kemampuan tumbuh dalam mediumpadat YMG yang mengandung 5000 ppm (I)2,4-D dan isolat BPBPI 02/04 pada 250 ppm(R) glifosat dan (G) parakuat dengan nilaihambatan pertumbuhan relatif terhadap kontrol(HPR) masing-masing 81,1; 27,8; dan 50,0%.Pengujian isolat terpilih terhadap kemampuanmendegradasi herbisida di dalam mediumtanah dan pasir juga dilakukan di rumah kacadengan menggunakan kacang tanah, sorgum,jagung, dan Boreria alata sebagai bioindikator.Kacang tanah dan B. alata memberikan responterbaik terhadap keberadaan herbisida (I) 2,4-Ddi dalam medium tanah dan pasir .


mBio ◽  
2021 ◽  
Author(s):  
Samantha C. Waterworth ◽  
Shirley Parker-Nance ◽  
Jason C. Kwan ◽  
Rosemary A. Dorrington

Marine sponges often form symbiotic relationships with bacteria that fulfil a specific need within the sponge holobiont, and these symbionts are often conserved within a narrow range of related taxa. To date, there exist only three known bacterial taxa ( Entoporibacteria , SAUL , and Tethybacterales ) that are globally distributed and found in a broad range of sponge hosts, and little is known about the latter two.


Sign in / Sign up

Export Citation Format

Share Document