scholarly journals Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM

2015 ◽  
Vol 112 (15) ◽  
pp. 4713-4718 ◽  
Author(s):  
Mathilde Séguéla-Arnaud ◽  
Wayne Crismani ◽  
Cécile Larchevêque ◽  
Julien Mazel ◽  
Nicole Froger ◽  
...  

Meiotic crossovers (COs) have two important roles, shuffling genetic information and ensuring proper chromosome segregation. Despite their importance and a large excess of precursors (i.e., DNA double-strand breaks, DSBs), the number of COs is tightly regulated, typically one to three per chromosome pair. The mechanisms ensuring that most DSBs are repaired as non-COs and the evolutionary forces imposing this constraint are poorly understood. Here we identified Topoisomerase3α (TOP3α) and the RECQ4 helicases—the Arabidopsis slow growth suppressor 1 (Sgs1)/Bloom syndrome protein (BLM) homologs—as major barriers to meiotic CO formation. First, the characterization of a specific TOP3α mutant allele revealed that, in addition to its role in DNA repair, this topoisomerase antagonizes CO formation. Further, we found that RECQ4A and RECQ4B constitute the strongest meiotic anti-CO activity identified to date, their concomitant depletion leading to a sixfold increase in CO frequency. In both top3α and recq4ab mutants, DSB number is unaffected, and extra COs arise from a normally minor pathway. Finally, both TOP3α and RECQ4A/B act independently of the previously identified anti-CO Fanconi anemia of complementation group M (FANCM) helicase. This finding shows that several parallel pathways actively limit CO formation and suggests that the RECQA/B and FANCM helicases prevent COs by processing different substrates. Despite a ninefold increase in CO frequency, chromosome segregation was unaffected. This finding supports the idea that CO number is restricted not because of mechanical constraints but likely because of the long-term costs of recombination. Furthermore, this work demonstrates how manipulating a few genes holds great promise for increasing recombination frequency in plant-breeding programs.

Aging ◽  
2014 ◽  
Vol 6 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Rika Kusumoto-Matsuo ◽  
Deblina Ghosh ◽  
Parimal Karmakar ◽  
Alfred May ◽  
Dale Ramsden ◽  
...  

2019 ◽  
Vol 47 (17) ◽  
pp. 9410-9422 ◽  
Author(s):  
Andrea M Kaminski ◽  
Kishore K Chiruvella ◽  
Dale A Ramsden ◽  
Thomas A Kunkel ◽  
Katarzyna Bebenek ◽  
...  

Abstract DNA double-strand breaks (DSBs) resulting from reactive oxygen species generated by exposure to UV and ionizing radiation are characterized by clusters of lesions near break sites. Such complex DSBs are repaired slowly, and their persistence can have severe consequences for human health. We have therefore probed DNA break repair containing a template 8-oxo-7,8-dihydro-2′-guanosine (8OG) by Family X Polymerase μ (Pol μ) in steady-state kinetics and cell-based assays. Pol μ tolerates 8OG-containing template DNA substrates, and the filled products can be subsequently ligated by DNA Ligase IV during Nonhomologous end-joining. Furthermore, Pol μ exhibits a strong preference for mutagenic bypass of 8OG by insertion of adenine. Crystal structures reveal that the template 8OG is accommodated in the Pol μ active site with none of the DNA substrate distortions observed for Family X siblings Pols β or λ. Kinetic characterization of template 8OG bypass indicates that Pol μ inserts adenosine nucleotides with weak sugar selectivity and, given the high cellular concentration of ATP, likely performs its role in repair of complex 8OG-containing DSBs using ribonucleotides.


2010 ◽  
Vol 21 (6) ◽  
pp. 885-896 ◽  
Author(s):  
Lois Tang ◽  
Thomas Machacek ◽  
Yasmine M. Mamnun ◽  
Alexandra Penkner ◽  
Jiradet Gloggnitzer ◽  
...  

From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans.


Author(s):  
Corentin Claeys Bouuaert ◽  
Stephen Pu ◽  
Juncheng Wang ◽  
Dinshaw J. Patel ◽  
Scott Keeney

Formation of meiotic DNA double-strand breaks (DSBs) by Spo11 is tightly regulated and tied to chromosome structure, but the higher-order assemblies that execute and control DNA breakage are poorly understood. We address this question through molecular characterization of Saccharomyces cerevisiae RMM proteins (Rec114, Mei4 and Mer2)—essential, conserved components of the DSB machinery. Each subcomplex of Rec114–Mei4 (2:1 heterotrimer) or Mer2 (homotetrameric coiled coil) is monodisperse in solution, but they independently condense with DNA into dynamic, reversible nucleoprotein clusters that share properties with phase-separated systems. Multivalent interactions drive condensation, which correlates with DSB formation in vivo. Condensates fuse into mixed Rec114–Mei4–Mer2 clusters that further recruit Spo11 complexes. Our data show how the DSB machinery self-assembles on chromosome axes to create centers of DSB activity. We propose that multilayered control of Spo11 arises from recruitment of regulatory components and modulation of biophysical properties of the condensates.


Author(s):  
Vikash Kumar Yadav ◽  
Corentin Claeys Bouuaert

Developmentally programmed formation of DNA double-strand breaks (DSBs) by Spo11 initiates a recombination mechanism that promotes synapsis and the subsequent segregation of homologous chromosomes during meiosis. Although DSBs are induced to high levels in meiosis, their formation and repair are tightly regulated to minimize potentially dangerous consequences for genomic integrity. In S. cerevisiae, nine proteins participate with Spo11 in DSB formation, but their molecular functions have been challenging to define. Here, we describe our current view of the mechanism of meiotic DSB formation based on recent advances in the characterization of the structure and function of DSB proteins and discuss regulatory pathways in the light of recent models.


2021 ◽  
Vol 118 (17) ◽  
pp. e2016363118
Author(s):  
Saravanapriah Nadarajan ◽  
Elisabeth Altendorfer ◽  
Takamune T. Saito ◽  
Marina Martinez-Garcia ◽  
Monica P. Colaiácovo

The position of recombination events established along chromosomes in early prophase I and the chromosome remodeling that takes place in late prophase I are intrinsically linked steps of meiosis that need to be tightly regulated to ensure accurate chromosome segregation and haploid gamete formation. Here, we show that RAD-51 foci, which form at the sites of programmed meiotic DNA double-strand breaks (DSBs), exhibit a biased distribution toward off-centered positions along the chromosomes in wild-type Caenorhabditis elegans, and we identify two meiotic roles for chromatin-associated protein HIM-17 that ensure normal chromosome remodeling in late prophase I. During early prophase I, HIM-17 regulates the distribution of DSB-dependent RAD-51 foci and crossovers on chromosomes, which is critical for the formation of distinct chromosome subdomains (short and long arms of the bivalents) later during chromosome remodeling. During late prophase I, HIM-17 promotes the normal expression and localization of protein phosphatases GSP-1/2 to the surface of the bivalent chromosomes and may promote GSP-1 phosphorylation, thereby antagonizing Aurora B kinase AIR-2 loading on the long arms and preventing premature loss of sister chromatid cohesion. We propose that HIM-17 plays distinct roles at different stages during meiotic progression that converge to promote normal chromosome remodeling and accurate chromosome segregation.


2019 ◽  
Vol 6 (8) ◽  
pp. 2389-2404 ◽  
Author(s):  
Mei M. Wang ◽  
Rui Cao ◽  
Wen G. Jiang ◽  
Ya K. Liu ◽  
Fan Yang ◽  
...  

Compared to fresh zinc oxide NPs, aged zinc oxide NPs induce higher levels of ROS and DNA double strand breaks, as well as more pronounced cell malignant progression in the tyrosine phosphatase SHP2 gain-of-function mutant mouse embryonic fibroblast cells.


2018 ◽  
Vol 85 (3) ◽  
Author(s):  
Elena-Stella Theophilou ◽  
Prerna Vohra ◽  
Maurice P. Gallagher ◽  
Ian R. Poxton ◽  
Garry W. Blakely

ABSTRACTClostridium difficileis an important nosocomial pathogen associated with potentially fatal disease induced by the use of antibiotics. Genetic characterization of such clinically important bacteria is often hampered by lack of availability of suitable tools. Here, we describe the use of I-SceI to induce DNA double-strand breaks, which increase the frequency of allelic exchange and enable the generation of markerless deletions inC. difficile. The usefulness of the system is illustrated by the deletion of genes encoding putative AddAB homologues. The ΔaddABmutants are sensitive to ultraviolet light and the antibiotic metronidazole, indicating a role in homologous recombination and the repair of DNA breaks. Despite the impairment in recombination, the mutants are still proficient for induction of the SOS response. In addition, deletion of thefliCgene, and subsequent complementation, reveals the importance of potential regulatory elements required for expression of a downstream gene encoding the flagellin glycosyltransferase.IMPORTANCEMost sequenced bacterial genomes contain genes encoding proteins of unknown or hypothetical function. To identify a phenotype for mutations in such genes, deletion is the preferred method for mutagenesis because it reduces the likelihood of polar effects, although it does not eliminate the possibility. Allelic exchange to produce deletions is dependent on the length of homologous regions used to generate merodiploids. Shorter regions of homology resolve at lower frequencies. The work presented here demonstrates the utility of inducing DNA double-strand breaks to increase the frequency of merodiploid resolution inClostridium difficile. Using this approach, we reveal the roles of two genes, encoding homologues of AddAB, in survival following DNA damage. The method is readily applicable to the production of deletions inC. difficileand expands the toolbox available for genetic analysis of this important anaerobic pathogen.


Sign in / Sign up

Export Citation Format

Share Document