scholarly journals Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating

2016 ◽  
Vol 113 (11) ◽  
pp. 2862-2867 ◽  
Author(s):  
Zheng Liang ◽  
Dingchang Lin ◽  
Jie Zhao ◽  
Zhenda Lu ◽  
Yayuan Liu ◽  
...  

Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium–scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with “lithiophilic” coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm2 over 80 cycles.

2020 ◽  
Vol 6 (10) ◽  
pp. eaaz3112 ◽  
Author(s):  
Huadong Yuan ◽  
Jianwei Nai ◽  
He Tian ◽  
Zhijin Ju ◽  
Wenkui Zhang ◽  
...  

The lithium metal anode (LMA) is considered as a promising star for next-generation high-energy density batteries but is still hampered by the severe growth of uncontrollable lithium dendrites. Here, we design “spansules” made of NaMg(Mn)F3@C core@shell microstructures as the matrix for the LMA, which can offer a long-lasting release of functional ions into the electrolyte. By the assistance of cryogenic transmission electron microscopy, we reveal that an in situ–formed metal layer and a unique LiF-involved bilayer structure on the Li/electrolyte interface would be beneficial for effectively suppressing the growth of lithium dendrites. As a result, the spansule-modified anode affords a high Coulombic efficiency of 98% for over 1000 cycles at a current density of 2 mA cm−2, which is the most stable LMA reported so far. When coupling this anode with the Li[Ni0.8Co0.1Mn0.1]O2 cathode, the practical full cell further exhibits highly improved capacity retention after 500 cycles.


Small Methods ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 1800035 ◽  
Author(s):  
Sufu Liu ◽  
Xinhui Xia ◽  
Zhujun Yao ◽  
Jianbo Wu ◽  
Liyuan Zhang ◽  
...  

Small Methods ◽  
2021 ◽  
pp. 2001035
Author(s):  
Zhiyuan Han ◽  
Chen Zhang ◽  
Qiaowei Lin ◽  
Yunbo Zhang ◽  
Yaqian Deng ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Guo ◽  
Wanying Zhang ◽  
Yubing Si ◽  
Donghai Wang ◽  
Yongzhu Fu ◽  
...  

AbstractThe interfacial instability of the lithium-metal anode and shuttling of lithium polysulfides in lithium-sulfur (Li-S) batteries hinder the commercial application. Herein, we report a bifunctional electrolyte additive, i.e., 1,3,5-benzenetrithiol (BTT), which is used to construct solid-electrolyte interfaces (SEIs) on both electrodes from in situ organothiol transformation. BTT reacts with lithium metal to form lithium 1,3,5-benzenetrithiolate depositing on the anode surface, enabling reversible lithium deposition/stripping. BTT also reacts with sulfur to form an oligomer/polymer SEI covering the cathode surface, reducing the dissolution and shuttling of lithium polysulfides. The Li–S cell with BTT delivers a specific discharge capacity of 1,239 mAh g−1 (based on sulfur), and high cycling stability of over 300 cycles at 1C rate. A Li–S pouch cell with BTT is also evaluated to prove the concept. This study constructs an ingenious interface reaction based on bond chemistry, aiming to solve the inherent problems of Li–S batteries.


2021 ◽  
Author(s):  
Yuping Wu ◽  
Xiaosong Xiong ◽  
Ruoyu Zhi ◽  
Qi Zhou ◽  
Wenqi Yan ◽  
...  

Metallic lithium is an promising next generation electrode material due to its ultrahigh specific capacity and the lowest potential. However, short cycling lifespan and safety hazards have hindered the practical...


InfoMat ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 155-174
Author(s):  
Yiyao Han ◽  
Bo Liu ◽  
Zhen Xiao ◽  
Wenkui Zhang ◽  
Xiuli Wang ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mao Yang ◽  
Nan Jue ◽  
Yuanfu Chen ◽  
Yong Wang

AbstractUniform migration of lithium (Li) ions between the separator and the lithium anode is critical for achieving good quality Li deposition, which is of much significance for lithium metal battery operation, especially for Li–sulfur (Li–S) batteries. Commercial separators such as polypropylene or polyethylene can be prepared by wet or dry processes, but they can indeed cause plentiful porosities, resulting in the uneven Li ion stripping/plating and finally the formation of Li dendrites. Thence, we constructed an atomic interlamellar ion channel by introducing the layered montmorillonite on the surface of the separator to guide Li ion flux and achieved stable Li deposition. The atomic interlamellar ion channel with a spacing of 1.4 nm showed strong absorption capacity for electrolytes and reserved capacity for Li ions, thus promoting rapid transfer of Li ions and resulting in even Li ion deposition at the anode. When assembled with the proposed separator, the Coulombic efficiency of Li||Cu batteries was 98.2% after 200 cycles and stable plating/stripping even after 800 h was achieved for the Li||Li symmetric batteries. Importantly, the proposed separator allows 140% specific capacity increase after 190 cycles as employing the Li–S batteries.


Sign in / Sign up

Export Citation Format

Share Document