scholarly journals Sufficient oxygen for animal respiration 1,400 million years ago

2016 ◽  
Vol 113 (7) ◽  
pp. 1731-1736 ◽  
Author(s):  
Shuichang Zhang ◽  
Xiaomei Wang ◽  
Huajian Wang ◽  
Christian J. Bjerrum ◽  
Emma U. Hammarlund ◽  
...  

The Mesoproterozoic Eon [1,600–1,000 million years ago (Ma)] is emerging as a key interval in Earth history, with a unique geochemical history that might have influenced the course of biological evolution on Earth. Indeed, although this time interval is rather poorly understood, recent chromium isotope results suggest that atmospheric oxygen levels were <0.1% of present levels, sufficiently low to have inhibited the evolution of animal life. In contrast, using a different approach, we explore the distribution and enrichments of redox-sensitive trace metals in the 1,400 Ma sediments of Unit 3 of the Xiamaling Formation, North China Block. Patterns of trace metal enrichments reveal oxygenated bottom waters during deposition of the sediments, and biomarker results demonstrate the presence of green sulfur bacteria in the water column. Thus, we document an ancient oxygen minimum zone. We develop a simple, yet comprehensive, model of marine carbon−oxygen cycle dynamics to show that our geochemical results are consistent with atmospheric oxygen levels >4% of present-day levels. Therefore, in contrast to previous suggestions, we show that there was sufficient oxygen to fuel animal respiration long before the evolution of animals themselves.

2017 ◽  
Vol 14 (8) ◽  
pp. 2133-2149 ◽  
Author(s):  
Shuichang Zhang ◽  
Xiaomei Wang ◽  
Huajian Wang ◽  
Emma U. Hammarlund ◽  
Jin Su ◽  
...  

Abstract. We studied sediments from the ca. 1400 million-year-old Xiamaling Formation from the North China block. The upper unit of this formation (unit 1) deposited mostly below storm wave base and contains alternating black and green-gray shales with very distinct geochemical characteristics. The black shales are enriched in redox-sensitive trace metals, have high concentrations of total organic carbon (TOC), high hydrogen index (HI) and iron speciation indicating deposition under anoxic conditions. In contrast, the green-gray shales show no trace metal enrichments, have low TOC, low HI and iron speciation consistent with an oxygenated depositional setting. Altogether, unit 1 displays alternations between oxic and anoxic depositional environments, driving differences in carbon preservation consistent with observations from the modern ocean. We combined our TOC and HI results to calculate the differences in carbon mineralization and carbon preservation by comparing the oxygenated and anoxic depositional environments. Through comparisons of these results with modern sedimentary environments, and by use of a simple diagenetic model, we conclude that the enhanced carbon mineralization under oxygenated conditions in unit 1 of the Xiamaling Formation required a minimum of 4 to 8 % of present-day atmospheric levels (PAL) of oxygen. These oxygen levels are higher than estimates based on chromium isotopes and reinforce the idea that the environment contained enough oxygen for animals long before their evolution.


2010 ◽  
Vol 40 (8) ◽  
pp. 1784-1801 ◽  
Author(s):  
Peter Brandt ◽  
Verena Hormann ◽  
Arne Körtzinger ◽  
Martin Visbeck ◽  
Gerd Krahmann ◽  
...  

Abstract Changes in the ventilation of the oxygen minimum zone (OMZ) of the tropical North Atlantic are studied using oceanographic data from 18 research cruises carried out between 28.5° and 23°W during 1999–2008 as well as historical data referring to the period 1972–85. In the core of the OMZ at about 400-m depth, a highly significant oxygen decrease of about 15 μmol kg−1 is found between the two periods. During the same time interval, the salinity at the oxygen minimum increased by about 0.1. Above the core of the OMZ, within the central water layer, oxygen decreased too, but salinity changed only slightly or even decreased. The scatter in the local oxygen–salinity relations decreased from the earlier to the later period suggesting a reduced filamentation due to mesoscale eddies and/or zonal jets acting on the background gradients. Here it is suggested that latitudinally alternating zonal jets with observed amplitudes of a few centimeters per second in the depth range of the OMZ contribute to the ventilation of the OMZ. A conceptual model of the ventilation of the OMZ is used to corroborate the hypothesis that changes in the strength of zonal jets affect mean oxygen levels in the OMZ. According to the model, a weakening of zonal jets, which is in general agreement with observed hydrographic evidences, is associated with a reduction of the mean oxygen levels that could significantly contribute to the observed deoxygenation of the North Atlantic OMZ.


2021 ◽  
Vol 118 (23) ◽  
pp. e2101544118
Author(s):  
Don E. Canfield ◽  
Mark A. van Zuilen ◽  
Sami Nabhan ◽  
Christian J. Bjerrum ◽  
Shuichang Zhang ◽  
...  

Oxygen concentration defines the chemical structure of Earth's ecosystems while it also fuels the metabolism of aerobic organisms. As different aerobes have different oxygen requirements, the evolution of oxygen levels through time has likely impacted both environmental chemistry and the history of life. Understanding the relationship between atmospheric oxygen levels, the chemical environment, and life, however, is hampered by uncertainties in the history of oxygen levels. We report over 5,700 Raman analyses of organic matter from nine geological formations spanning in time from 742 to 1,729 Ma. We find that organic matter was effectively oxidized during weathering and little was recycled into marine sediments. Indeed, during this time interval, organic matter was as efficiently oxidized during weathering as it is now. From these observations, we constrain minimum atmospheric oxygen levels to between 2 to 24% of present levels from the late Paleoproterozoic Era into the Neoproterozoic Era. Indeed, our results reveal that eukaryote evolution, including early animal evolution, was not likely hindered by oxygen through this time interval. Our results also show that due to efficient organic recycling during weathering, carbon cycle dynamics can be assessed directly from the sediment carbon record.


2015 ◽  
Vol 12 (20) ◽  
pp. 6045-6058 ◽  
Author(s):  
B. Srain ◽  
S. Pantoja ◽  
J. Sepúlveda ◽  
C. B. Lange ◽  
P. Muñoz ◽  
...  

Abstract. We reconstructed oxygenation changes in the upwelling ecosystem off Concepción (36° S), Chile, using inorganic and organic proxies in a sediment core covering the last ca. 110 years of sedimentation in this area. Authigenic enrichments of Mo, U and Cd were observed between ca. 1935 and 1971 CE, implying a prolonged period with predominantly more reduced conditions in bottom waters and surface sediments. Significant positive correlations between redox-sensitive metals, algal sterols, biomarkers of micro-aerophilic and anaerobic microorganisms, and archaeal glycerol dialkyl glycerol tetraethers point to a tight coupling among bottom water O2 depletion and increased primary and export production. The time interval with low O2 of ca. 35 years seems to follow low-frequency interdecadal variation of the Pacific Decadal Oscillation, and it may have resulted in O2 depletion over the entire continental shelf off Concepción. Taking this together with the concurrent increase in sedimentary molecular indicators of micro-aerophilic and anaerobic microbes, we can suggest that changes in oxygenation of the water column are reflected by changes in microbial community. This study can inform our understanding of ecological consequences to projected trends in ocean deoxygenation.


2005 ◽  
Vol 34 (2) ◽  
pp. 271-280 ◽  
Author(s):  
N. Mallorquí ◽  
J.B. Arellano ◽  
C.M. Borrego ◽  
L.J. Garcia-Gil

2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Jacob M. Hilzinger ◽  
Vidhyavathi Raman ◽  
Kevin E. Shuman ◽  
Brian J. Eddie ◽  
Thomas E. Hanson

ABSTRACT The green sulfur bacteria ( Chlorobiaceae ) are anaerobes that use electrons from reduced sulfur compounds (sulfide, S 0 , and thiosulfate) as electron donors for photoautotrophic growth. Chlorobaculum tepidum , the model system for the Chlorobiaceae , both produces and consumes extracellular S 0 globules depending on the availability of sulfide in the environment. These physiological changes imply significant changes in gene regulation, which has been observed when sulfide is added to Cba. tepidum growing on thiosulfate. However, the underlying mechanisms driving these gene expression changes, i.e., the specific regulators and promoter elements involved, have not yet been defined. Here, differential RNA sequencing (dRNA-seq) was used to globally identify transcript start sites (TSS) that were present during growth on sulfide, biogenic S 0 , and thiosulfate as sole electron donors. TSS positions were used in combination with RNA-seq data from cultures growing on these same electron donors to identify both basal promoter elements and motifs associated with electron donor-dependent transcriptional regulation. These motifs were conserved across homologous Chlorobiaceae promoters. Two lines of evidence suggest that sulfide-mediated repression is the dominant regulatory mode in Cba. tepidum . First, motifs associated with genes regulated by sulfide overlap key basal promoter elements. Second, deletion of the Cba. tepidum 1277 ( CT1277 ) gene, encoding a putative regulatory protein, leads to constitutive overexpression of the sulfide:quinone oxidoreductase CT1087 in the absence of sulfide. The results suggest that sulfide is the master regulator of sulfur metabolism in Cba. tepidum and the Chlorobiaceae . Finally, the identification of basal promoter elements with differing strengths will further the development of synthetic biology in Cba. tepidum and perhaps other Chlorobiaceae . IMPORTANCE Elemental sulfur is a key intermediate in biogeochemical sulfur cycling. The photoautotrophic green sulfur bacterium Chlorobaculum tepidum either produces or consumes elemental sulfur depending on the availability of sulfide in the environment. Our results reveal transcriptional dynamics of Chlorobaculum tepidum on elemental sulfur and increase our understanding of the mechanisms of transcriptional regulation governing growth on different reduced sulfur compounds. This report identifies genes and sequence motifs that likely play significant roles in the production and consumption of elemental sulfur. Beyond this focused impact, this report paves the way for the development of synthetic biology in Chlorobaculum tepidum and other Chlorobiaceae by providing a comprehensive identification of promoter elements for control of gene expression, a key element of strain engineering.


2010 ◽  
Vol 484 (4-6) ◽  
pp. 333-337 ◽  
Author(s):  
Hitoshi Tamiaki ◽  
Shingo Tateishi ◽  
Shosuke Nakabayashi ◽  
Yutaka Shibata ◽  
Shigeru Itoh

2019 ◽  
Author(s):  
Anna Plass ◽  
Christian Schlosser ◽  
Stefan Sommer ◽  
Andrew W. Dale ◽  
Eric P. Achterberg ◽  
...  

Abstract. Sediments in oxygen-depleted marine environments can be an important sink or source of bio-essential trace metals in the ocean. However, the key mechanisms controlling the release from or burial of trace metals in sediments are not exactly understood. Here, we investigate the benthic biogeochemical cycling of Fe and Cd in the oxygen minimum zone off Peru. We combine bottom water profiles, pore water profiles, as well as benthic fluxes determined from pore water profiles and in-situ from benthic chamber incubations along a depth transect at 12° S. In agreement with previous studies, both concentration-depth profiles and in-situ benthic fluxes indicate a Fe release from sediments into bottom waters. Diffusive Fe fluxes and Fe fluxes from benthic chamber incubations are roughly consistent (0.3–17.1 mmol m−2 y−1), indicating that diffusion is the main transport mechanism of dissolved Fe across the sediment-water interface. The occurrence of mats of sulfur oxidizing bacteria on the seafloor represents an important control on the spatial distribution of Fe fluxes by regulating hydrogen sulfide (H2S) concentrations and, potentially, Fe sulfide precipitation within the surface sediment. Removal of dissolved Fe after its release to anoxic bottom waters is rapid in the first 4 m away from the seafloor (half-life


Sign in / Sign up

Export Citation Format

Share Document