scholarly journals Silk-based blood stabilization for diagnostics

2016 ◽  
Vol 113 (21) ◽  
pp. 5892-5897 ◽  
Author(s):  
Jonathan A. Kluge ◽  
Adrian B. Li ◽  
Brooke T. Kahn ◽  
Dominique S. Michaud ◽  
Fiorenzo G. Omenetto ◽  
...  

Advanced personalized medical diagnostics depend on the availability of high-quality biological samples. These are typically biofluids, such as blood, saliva, or urine; and their collection and storage is critical to obtain reliable results. Without proper temperature regulation, protein biomarkers in particular can degrade rapidly in blood samples, an effect that ultimately compromises the quality and reliability of laboratory tests. Here, we present the use of silk fibroin as a solid matrix to encapsulate blood analytes, protecting them from thermally induced damage that could be encountered during nonrefrigerated transportation or freeze–thaw cycles. Blood samples are recovered by simple dissolution of the silk matrix in water. This process is demonstrated to be compatible with a number of immunoassays and provides enhanced sample preservation in comparison with traditional air-drying paper approaches. Additional processing can remediate interactions with conformational structures of the silk protein to further enhance blood stabilization and recovery. This approach can provide expanded utility for remote collection of blood and other biospecimens empowering new modalities of temperature-independent remote diagnostics.

1991 ◽  
Vol 37 (2) ◽  
pp. 186-190 ◽  
Author(s):  
Karl-P Vorderwinkler ◽  
Eilka Artner-Dworzak ◽  
Gab Jakob ◽  
Johanne Mair ◽  
Franz Diensti ◽  
...  

Abstract Concentrations of atrial natriuretic peptide (ANP) are increased in plasma of patients with impaired cardiac and renal function. The second messenger of ANP, cyclic guanosine monophosphate (cGMP), is released into the plasma specifically upon stimulation of cells with ANP. Although nitrates can also activate intracellular cGMP synthesis, we detected no increase in plasma cGMP concentrations after infusions of glycerol trinitrate. Because immunoreactive ANP is highly susceptible to degradation and nonspecific influences in blood samples, determinations of ANP require immediate centrifugation and storage of plasma at -20 degrees C. In contrast, we found that cGMP is stable for five days in vitro in blood samples containing EDTA. In 147 healthy blood donors, the upper cutoff value for plasma cGMP was 6.60 nmol/L, not significantly different (P greater than 0.05) from that for 222 patients with disorders other than cardiovascular and renal. In 69 patients with manifest congestive heart failure (NYHA stages II-IV), 65 had increased cGMP values. Using the above cutoff value for cGMP gave diagnostic sensitivity of 94.2% and specificity of 93.7%. Plasma cGMP may thus provide an alternative for routine clinical measurements of ANP in cardiac diseases in the absence of renal disorders.


2015 ◽  
Vol 112 (32) ◽  
pp. E4354-E4363 ◽  
Author(s):  
Fatih Inci ◽  
Chiara Filippini ◽  
Murat Baday ◽  
Mehmet Ozgun Ozen ◽  
Semih Calamak ◽  
...  

Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients’ homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE2RD), which addresses all these impediments on a single platform. The NE2RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE2RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE2RD’s broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients’ homes.


2017 ◽  
Vol 25 (11) ◽  
pp. 730-732
Author(s):  
Fiona Ulph ◽  
Dame Tina Lavender ◽  
Rebecca Bennett

Author(s):  
Hideyuki Fumoto ◽  
Ji-Feng Chen ◽  
Qun Zhou ◽  
Alex L. Massiello ◽  
Raymond Dessoffy ◽  
...  

Objective Most commercially available bioprosthetic valves are stored in an aldehyde solution. We report a new alternative method: Self-expanding valves composed of dehydrated tissues with a high glycerin:water ratio can be collapsed into specially designed sheaths prior to sterilization for ease of delivery and storage. Materials and Methods Changes in tissue dimension of five samples of bovine pericardium were evaluated from baseline after glycerol treatment, air-drying, ethylene oxide (EtO) sterilization, and rehydration with water. Three valves fabricated from glutaraldehyde cross-linked tissues, including porcine pericardial tissue, bovine pericardial tissue, and porcine aortic valve, were dehydrated through a proprietary glycerin-based process, collapsed, placed within a catheter, EtO sterilized, stored for up to 212 days, and rehydrated with water. These valves were characterized in a mock circulation by mounting them at the inlet portion of a pneumatic pump before dehydration and after rehydration to evaluate the effects of dehydration and rehydration on the valve performance. Results Tissues treated with glycerol solution showed no significant changes in dimension from baseline after glycerol treatment, air-drying, EtO sterilization, and rehydration with water. In all the valves, pump flows reached the maximum output capacity of the pneumatic pump after rehydration without an increase in filling pressures as compared with those before dehydration. Conclusions This method for storing collapsible bioprosthetic valves using a proprietary glycerin-based process demonstrated excellent valve performance.


Author(s):  
Stephen H. J. Andrews ◽  
Nigel G. Shrive ◽  
Janet L. Ronsky

The menisci are anisotropic hydrated connective tissues, situated in the tibiofemoral joint. The menisci transmit approximately 50% of the load across this joint [1, 2]. In this tissue, compression would only be experienced in the axial (vertical) direction, and as such, many studies have tested samples in the axial direction to determine the compressive properties [3–5]. The material behaviour of the menisci has been described as biphasic, meaning the response of the tissue to applied load is time dependent and determined by both the solid constituents and their interaction with the fluid component [3]. Due to the low permeability of the tissue, deformation results in relative movement of the solid matrix and the fluid it contains, resulting in the creation of drag forces between the two phases. Fluid exudation from the matrix governs the viscoelastic behaviour of the tissue, including stress relaxation and creep [6]. The swelling behaviour of meniscal samples in varying osmotic environments was evaluated in our lab (unpublished data), where they swelled significantly, approximately 30% volumetrically in iso-osmotic phosphate buffered saline (PBS). It was hypothesized that the material properties of the tissue would be affected by this significant swelling. To date, no study has evaluated the effect of sample swelling, due to sample preparation and storage, on the behaviour of the menisci in compression. Therefore, the purpose of this study was to evaluate this relationship. We hypothesized that meniscal samples would be less stiff and more permeable in a swollen state than when they are compressed to the ‘fresh’, non-swollen, thickness prior to initiation of the protocol.


Sign in / Sign up

Export Citation Format

Share Document