scholarly journals Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity

2017 ◽  
Vol 114 (24) ◽  
pp. 6358-6363 ◽  
Author(s):  
Takashi Matsui ◽  
Hideki Omuro ◽  
Yu-Fan Liu ◽  
Mariko Soya ◽  
Takeru Shima ◽  
...  

Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry–based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain.

Author(s):  
Takashi Matsui

Brain glycogen localized in astrocytes produces lactate via cAMP signaling, which regulates memory functions and endurance capacity. Exhaustive endurance exercise with hypoglycemia decreases brain glycogen, although the mechanism underlying this phenomenon remains unclear. Since insulin-induced hypoglycemia decreases brain glycogen, this study tested the hypothesis that hypoglycemia mediates exercise-induced brain glycogen decrease. To test the hypothesis, the effects of insulin- and exhaustive exercise-induced hypoglycemia on brain glycogen levels were compared using the microwave irradiation method in adult Wistar rats. The insulin challenge and exhaustive exercise induced similar levels of severe hypoglycemia. Glycogen in the hypothalamus and cerebellum decreased similarly with the insulin challenge and exhaustive exercise; however, glycogen in the cortex, hippocampus, and brainstem of the exercise group were lower compared to the insulin group. Blood glucose correlated positively with brain glycogen, but the slope of regression lines was greater in the exercise group compared to the insulin group in the cortex, hippocampus, and brainstem, but not the hypothalamus and cerebellum. Brain lactate and cAMP levels in the hypothalamus and cerebellum increased similarly with the insulin challenge and exhaustive exercise, but those in the cortex, hippocampus, and brainstem of the exercise group were higher compared to the insulin group. These findings support the hypothesis that hypoglycemia mediates the exercise-induced reduction in brain glycogen, at least in the hypothalamus and cerebellum. However, glycogen reduction during exhaustive endurance exercise in the cortex, hippocampus, and brainstem is not due to hypoglycemia alone, implicating the role of exercise-specific neuronal activity in brain glycogen decrease.


1991 ◽  
Vol 161 (1) ◽  
pp. 489-508 ◽  
Author(s):  
A. Pagnotta ◽  
C. L. Milligan

The role of blood-borne glucose in the restoration of white muscle glycogen following exhaustive exercise in the active, pelagic rainbow trout (Oncorhynchus mykiss) and the more sluggish, benthic winter flounder (Pseudopleuronectes americanus) were examined. During recovery from exhaustive exercise, the animals were injected with a bolus of universally labelled [14C]glucose via dorsal aortic (trout) or caudal artery (flounder) catheters. The bulk of the injected label (50–70%) remained as glucose in the extracellular fluid in both species. The major metabolic fates of the injected glucose were oxidation to CO2 (6–8%) and production of lactate (6–8%), the latter indicative of continued anaerobic metabolism post-exercise. Oxidation of labelled glucose could account for up to 40% and 15% of the post-exercise MO2 in trout and flounder, respectively. Exhaustive exercise resulted in a reduction of muscle glycogen stores and accumulation of muscle lactate. Glycogen restoration in trout began 2–4h after exercise, whereas in flounder, glycogen restoration began within 2h. Despite a significant labelling of the intramuscular glucose pool, less than 1% of the infused labelled glucose was incorporated into muscle glycogen. This suggests that blood-borne glucose does not contribute significantly to the restoration of muscle glycogen following exhaustive exercise in either trout or flounder and provides further evidence against a prominent role for the Cori cycle in these species.


2011 ◽  
Vol 589 (11) ◽  
pp. 2871-2885 ◽  
Author(s):  
Joachim Nielsen ◽  
Hans-Christer Holmberg ◽  
Henrik D. Schrøder ◽  
Bengt Saltin ◽  
Niels Ørtenblad

1960 ◽  
Vol 198 (4) ◽  
pp. 787-792 ◽  
Author(s):  
A. Chari-Bitron ◽  
S. Lepkovsky ◽  
R. M. Lemmon ◽  
M. K. Dimick

The glycogen content of nine tissues of trained-fed rats was investigated at fasting and at different times after eating with and without water. With the exception of the brain and muscles, the tissues contained little or no glycogen at fasting and accumulated variable amounts during the course of digestion with peak accumulation in most cases 4–7 hours after the commencement of feeding. The brain glycogen did not vary in the rats in spite of the different experimental conditions of this study. The amount of muscle glycogen in the fed rats was the same or slightly more than the amount found in the fasting rats. The fasting liver incorporated C14 substrates into glycogen while it was decreasing in amounts. Fasting muscles incorporated C14 substrates almost as fast as fed muscles indicating that muscle glycogen behaved as an intermediate compound and was metabolized as fast as formed. Accumulation of glycogen in the mesenteric, renal and subcutaneous fatty tissues was decreased by a) feeding without water and b) excessive deposits of fat in the fatty tissues.


1986 ◽  
Vol 60 (4) ◽  
pp. 1274-1283 ◽  
Author(s):  
R. F. Fregosi ◽  
J. A. Dempsey

We determined changes in rat plantaris, diaphragm, and intercostal muscle metabolites following exercise of various intensities and durations, in normoxia and hypoxia (FIO2 = 0.12). Marked alveolar hyperventilation occurred during all exercise conditions, suggesting that respiratory muscle motor activity was high. [ATP] was maintained at rest levels in all muscles during all normoxic and hypoxic exercise bouts, but at the expense of creatine phosphate (CP) in plantaris muscle and diaphragm muscle following brief exercise at maximum O2 uptake (VO2max) in normoxia. In normoxic exercise plantaris [glycogen] fell as exercise exceeded 60% VO2max, and was reduced to less than 50% control during exhaustive endurance exercise (68% VO2max for 54 min and 84% for 38 min). Respiratory muscle [glycogen] was unchanged at VO2max as well as during either type of endurance exercise. Glucose 6-phosphate (G6P) rose consistently during heavy exercise in diaphragm but not in plantaris. With all types of exercise greater than 84% VO2max, lactate concentration ([LA]) in all three muscles rose to the same extent as arterial [LA], except at VO2max, where respiratory muscle [LA] rose to less than half that in arterial blood or plantaris. Exhaustive exercise in hypoxia caused marked hyperventilation and reduced arterial O2 content; glycogen fell in plantaris (20% of control) and in diaphragm (58%) and intercostals (44%). We conclude that respiratory muscle glycogen stores are spared during exhaustive exercise in the face of substantial glycogen utilization in plantaris, even under conditions of extreme hyperventilation and reduced O2 transport. This sparing effect is due primarily to G6P inhibition of glycogen phosphorylase in diaphragm muscle. The presence of elevated [LA] in the absence of glycogen utilization suggests that increased lactate uptake, rather than lactate production, occurred in the respiratory muscles during exhaustive exercise.


2016 ◽  
Vol 37 (8) ◽  
pp. 2883-2893 ◽  
Author(s):  
Gülin Öz ◽  
Mauro DiNuzzo ◽  
Anjali Kumar ◽  
Amir Moheet ◽  
Ameer Khowaja ◽  
...  

Supercompensated brain glycogen levels may contribute to the development of hypoglycemia-associated autonomic failure (HAAF) following recurrent hypoglycemia (RH) by providing energy for the brain during subsequent periods of hypoglycemia. To assess the role of glycogen supercompensation in the generation of HAAF, we estimated the level of brain glycogen following RH and acute hypoglycemia (AH). After undergoing 3 hyperinsulinemic, euglycemic and 3 hyperinsulinemic, hypoglycemic clamps (RH) on separate occasions at least 1 month apart, five healthy volunteers received [1-13C]glucose intravenously over 80+ h while maintaining euglycemia. 13C-glycogen levels in the occipital lobe were measured by 13C magnetic resonance spectroscopy at ∼8, 20, 32, 44, 56, 68 and 80 h at 4 T and glycogen levels estimated by fitting the data with a biophysical model that takes into account the tiered glycogen structure. Similarly, prior 13C-glycogen data obtained following a single hypoglycemic episode (AH) were fitted with the same model. Glycogen levels did not significantly increase after RH relative to after euglycemia, while they increased by ∼16% after AH relative to after euglycemia. These data suggest that glycogen supercompensation may be blunted with repeated hypoglycemic episodes. A causal relationship between glycogen supercompensation and generation of HAAF remains to be established.


1993 ◽  
Vol 180 (1) ◽  
pp. 175-193 ◽  
Author(s):  
C. L. Milligan ◽  
S. S. Girard

We have investigated the metabolic fate of blood lactate in resting rainbow trout and in fish recovering from a bout of exhaustive exercise. At rest and during recovery from exercise, the majority of blood lactate was oxidized, the proportion increasing with increasing oxygen consumption. It is estimated that, during recovery from exhaustive exercise, lactate released from the muscle has the potential to fuel a significant portion of oxidative metabolism. The bulk of the remaining blood lactate reappeared in the muscle lactate pool, probably via direct uptake by the muscle. There was a significant incorporation of blood lactate into the muscle glycogen pool, providing strong evidence for in situ glycogenesis as the mode for muscle glycogen replenishment. To investigate the role of the liver in blood lactate clearance, trout were functionally hepatectomized by ligation of the hepatic portal circulation. The exercise performance of hepatectomized fish was equal to that of sham- operated fish and controls, indicating that muscle relies primarily on endogenous fuel stores. Furthermore, blood lactate levels immediately after exercise were greater and muscle metabolic recovery was faster in hepatectomized fish than in sham-operated fish and controls. These observations suggest that glycogen resynthesis in trout muscle may be retarded because of a non- recoverable loss of substrate (i.e. lactate) from the muscle, because the lactate released is utilized by the liver. These results are discussed in view of what is known about these processes in other ectothermic vertebrates.


Author(s):  
J.E. Johnson

Although neuroaxonal dystrophy (NAD) has been examined by light and electron microscopy for years, the nature of the components in the dystrophic axons is not well understood. The present report examines nucleus gracilis and cuneatus (the dorsal column nuclei) in the brain stem of aging mice.Mice (C57BL/6J) were sacrificed by aldehyde perfusion at ages ranging from 3 months to 23 months. Several brain areas and parts of other organs were processed for electron microscopy.At 3 months of age, very little evidence of NAD can be discerned by light microscopy. At the EM level, a few axons are found to contain dystrophic material. By 23 months of age, the entire nucleus gracilis is filled with dystrophic axons. Much less NAD is seen in nucleus cuneatus by comparison. The most recurrent pattern of NAD is an enlarged profile, in the center of which is a mass of reticulated material (reticulated portion; or RP).


Sign in / Sign up

Export Citation Format

Share Document