scholarly journals Amorphous boron oxide at megabar pressures via inelastic X-ray scattering

2018 ◽  
Vol 115 (23) ◽  
pp. 5855-5860 ◽  
Author(s):  
Sung Keun Lee ◽  
Yong-Hyun Kim ◽  
Paul Chow ◽  
Yunming Xiao ◽  
Cheng Ji ◽  
...  

Structural transition in amorphous oxides, including glasses, under extreme compression above megabar pressures (>1 million atmospheric pressure, 100 GPa) results in unique densification paths that differ from those in crystals. Experimentally verifying the atomistic origins of such densifications beyond 100 GPa remains unknown. Progress in inelastic X-ray scattering (IXS) provided insights into the pressure-induced bonding changes in oxide glasses; however, IXS has a signal intensity several orders of magnitude smaller than that of elastic X-rays, posing challenges for probing glass structures above 100 GPa near the Earth’s core–mantle boundary. Here, we report megabar IXS spectra for prototypical B2O3 glasses at high pressure up to ∼120 GPa, where it is found that only four-coordinated boron ([4]B) is prevalent. The reduction in the [4]B–O length up to 120 GPa is minor, indicating the extended stability of sp3-bonded [4]B. In contrast, a substantial decrease in the average O–O distance upon compression is revealed, suggesting that the densification in B2O3 glasses is primarily due to O–O distance reduction without the formation of [5]B. Together with earlier results with other archetypal oxide glasses, such as SiO2 and GeO2, the current results confirm that the transition pressure of the formation of highly coordinated framework cations systematically increases with the decreasing atomic radius of the cations. These observations highlight a new opportunity to study the structure of oxide glass above megabar pressures, yielding the atomistic origins of densification in melts at the Earth’s core–mantle boundary.

2019 ◽  
Vol 46 (23) ◽  
pp. 13756-13764 ◽  
Author(s):  
Yong‐Hyun Kim ◽  
Yoo Soo Yi ◽  
Hyo‐Im Kim ◽  
Paul Chow ◽  
Yuming Xiao ◽  
...  

2012 ◽  
Vol 313-314 ◽  
pp. 79-85 ◽  
Author(s):  
Yuki Shibazaki ◽  
Eiji Ohtani ◽  
Hiroshi Fukui ◽  
Takeshi Sakai ◽  
Seiji Kamada ◽  
...  

2012 ◽  
Vol 25 (4) ◽  
pp. 9-15 ◽  
Author(s):  
L. Braicovich ◽  
N. B. Brookes ◽  
G. Ghiringhelli ◽  
M. Minola ◽  
G. Monaco ◽  
...  
Keyword(s):  
X Rays ◽  
X Ray ◽  

2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


1978 ◽  
Vol 22 (3) ◽  
pp. 276-282
Author(s):  
Jozef Brestenský ◽  
Gustáv Siráň ◽  
I. Cupal

1984 ◽  
Vol 17 (5) ◽  
pp. 337-343 ◽  
Author(s):  
O. Yoda

A high-resolution small-angle X-ray scattering camera has been built, which has the following features. (i) The point collimation optics employed allows the scattering cross section of the sample to be directly measured without corrections for desmearing. (ii) A small-angle resolution better than 0.5 mrad is achieved with a camera length of 1.6 m. (iii) A high photon flux of 0.9 photons μs−1 is obtained on the sample with the rotating-anode X-ray generator operated at 40 kV–30 mA. (iv) Incident X-rays are monochromated by a bent quartz crystal, which makes the determination of the incident X-ray intensity simple and unambiguous. (v) By rotation of the position-sensitive proportional counter around the direct beam, anisotropic scattering patterns can be observed without adjusting the sample. Details of the design and performance are presented with some applications.


2016 ◽  
Vol 23 (4) ◽  
pp. 880-886 ◽  
Author(s):  
Jungho Kim ◽  
Xianbo Shi ◽  
Diego Casa ◽  
Jun Qian ◽  
XianRong Huang ◽  
...  

Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the IrL3-edge stands at ∼25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the IrL3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.


1997 ◽  
Vol 30 (1) ◽  
pp. 49-54 ◽  
Author(s):  
J.-M. Dubuisson ◽  
T. Decamps ◽  
P. Vachette

An evacuated, temperature-controlled cell has been built for use on the small-angle X-ray scattering instrument D24 at the synchrotron radiation facility LURE. The sample is placed in a quartz capillary sealed in a stainless-steel holder using a vacuum-tight glue. Several O rings provide a vacuum path upstream and downstream from the cell, so that the X-ray beam only meets the capillary walls and the solution under study between the slits and the beam stop, while the sample is maintained under atmospheric pressure. The cell temperature is controlled via a water circulation through a copper sheath in tight contact with the steel holder. The use of this cell results in a marked reduction of the background, as observed in two series of parallel experiments using a conventional cell and this evacuated cell. The decrease ranges from a factor of 2 at s 1 values larger than 0.008 Å−1 to more than 15 at s = 0.00116 Å−1, where s is the modulus of the scattering vector (s = 2sin θ/λ, 2θ is the scattering angle and λ is the wavelength of the X-rays).


Sign in / Sign up

Export Citation Format

Share Document