scholarly journals Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility

2018 ◽  
Vol 115 (22) ◽  
pp. E5135-E5143 ◽  
Author(s):  
Wentao Li ◽  
Ruben J. G. Hulswit ◽  
Scott P. Kenney ◽  
Ivy Widjaja ◽  
Kwonil Jung ◽  
...  

Porcine deltacoronavirus (PDCoV), identified in 2012, is a common enteropathogen of swine with worldwide distribution. The source and evolutionary history of this virus is, however, unknown. PDCoV belongs to the Deltacoronavirus genus that comprises predominantly avian CoV. Phylogenetic analysis suggests that PDCoV originated relatively recently from a host-switching event between birds and mammals. Insight into receptor engagement by PDCoV may shed light into such an exceptional phenomenon. Here we report that PDCoV employs host aminopeptidase N (APN) as an entry receptor and interacts with APN via domain B of its spike (S) protein. Infection of porcine cells with PDCoV was drastically reduced by APN knockout and rescued after reconstitution of APN expression. In addition, we observed that PDCoV efficiently infects cells of unusual broad species range, including human and chicken. Accordingly, PDCoV S was found to target the phylogenetically conserved catalytic domain of APN. Moreover, transient expression of porcine, feline, human, and chicken APN renders cells susceptible to PDCoV infection. Binding of PDCoV to an interspecies conserved site on APN may facilitate direct transmission of PDCoV to nonreservoir species, including humans, potentially reflecting the mechanism that enabled a virus, ancestral to PDCoV, to breach the species barrier between birds and mammals. The APN cell surface protein is also used by several members of the Alphacoronavirus genus. Hence, our data constitute the second identification of CoVs from different genera that use the same receptor, implying that CoV receptor selection is subjected to specific restrictions that are still poorly understood.

Author(s):  
Sergio A Muñoz-Gómez ◽  
Keira Durnin ◽  
Laura Eme ◽  
Christopher Paight ◽  
Christopher E Lane ◽  
...  

Abstract A most interesting exception within the parasitic Apicomplexa is Nephromyces, an extracellular, probably mutualistic, endosymbiont found living inside molgulid ascidian tunicates (i.e., sea squirts). Even though Nephromyces is now known to be an apicomplexan, many other questions about its nature remain unanswered. To gain further insights into the biology and evolutionary history of this unusual apicomplexan, we aimed to (1) find the precise phylogenetic position of Nephromyces within the Apicomplexa, (2) search for the apicoplast genome of Nephromyces, and (3) infer the major metabolic pathways in the apicoplast of Nephromyces. To do this, we sequenced a metagenome and a metatranscriptome from the molgulid renal sac, the specialized habitat where Nephromyces thrives. Our phylogenetic analyses of conserved nucleus-encoded genes robustly suggest that Nephromyces is a novel lineage sister to the Hematozoa, which comprises both the Haemosporidia (e.g., Plasmodium) and the Piroplasmida (e.g., Babesia and Theileria). Furthermore, a survey of the renal sac metagenome revealed 13 small contigs that closely resemble the genomes of the non-photosynthetic reduced plastids, or apicoplasts, of other apicomplexans. We show that these apicoplast genomes correspond to a diverse set of most closely related but genetically divergent Nephromyces lineages that co-inhabit a single tunicate host. In addition, the apicoplast of Nephromyces appears to have retained all biosynthetic pathways inferred to have been ancestral to parasitic apicomplexans. Our results shed light on the evolutionary history of the only probably mutualistic apicomplexan known, Nephromyces, and provide context for a better understanding of its life style and intricate symbiosis.


2019 ◽  
Vol 94 (2) ◽  
pp. 366-377 ◽  
Author(s):  
Bryan M. Gee ◽  
Robert R. Reisz

AbstractNanobamus macrorhinus Schoch and Milner, 2014 is a small amphibamiform temnospondyl from the early Permian Arroyo Formation of Texas. It is most readily characterized by an elongate and partially subdivided naris. This condition is superficially reminiscent of that seen in the coeval trematopids, the group to which N. macrorhinus was originally referred to under an interpretation of the holotype as a larval form. This was discounted by later workers, but the amphibamiform affinities of the specimen were not formalized until recently. The specimen has never been described in the context of its amphibamiform affinities and remains poorly characterized, never having been sampled in a phylogenetic analysis. Here we present a complete, updated osteological description of N. macrorhinus, including an improved characterization of its unique mosaic of plesiomorphic and apomorphic features and clarification of the taxon's autapomorphies. Our analysis of the taxon's phylogenetic position within Amphibamiformes shows that N. macrorhinus was recovered as diverging after basal amphibamiforms, e.g., the micropholids, and before derived amphibamiforms, e.g., the amphibamids. This is supported by the unique mixture of retained plesiomorphies, e.g., nonforeshortened postparietals and an oval choana, and apomorphies, e.g., a narrow interorbital region and slender palatal rami of the pterygoid. These results reflect the complexity of terrestrial amphibamiform diversity and provide further insight into the evolutionary history of the lissamphibian stem in terrestrial environments.


2014 ◽  
Vol 281 (1788) ◽  
pp. 20140806 ◽  
Author(s):  
Daniel B. Thomas ◽  
Kevin J. McGraw ◽  
Michael W. Butler ◽  
Matthew T. Carrano ◽  
Odile Madden ◽  
...  

The broad palette of feather colours displayed by birds serves diverse biological functions, including communication and camouflage. Fossil feathers provide evidence that some avian colours, like black and brown melanins, have existed for at least 160 million years (Myr), but no traces of bright carotenoid pigments in ancient feathers have been reported. Insight into the evolutionary history of plumage carotenoids may instead be gained from living species. We visually surveyed modern birds for carotenoid-consistent plumage colours (present in 2956 of 9993 species). We then used high-performance liquid chromatography and Raman spectroscopy to chemically assess the family-level distribution of plumage carotenoids, confirming their presence in 95 of 236 extant bird families (only 36 family-level occurrences had been confirmed previously). Using our data for all modern birds, we modelled the evolutionary history of carotenoid-consistent plumage colours on recent supertrees. Results support multiple independent origins of carotenoid plumage pigmentation in 13 orders, including six orders without previous reports of plumage carotenoids. Based on time calibrations from the supertree, the number of avian families displaying plumage carotenoids increased throughout the Cenozoic, and most plumage carotenoid originations occurred after the Miocene Epoch (23 Myr). The earliest origination of plumage carotenoids was reconstructed within Passeriformes, during the Palaeocene Epoch (66–56 Myr), and not at the base of crown-lineage birds.


2017 ◽  
Author(s):  
Elijah K. Lowe ◽  
Anders Garm ◽  
Esther Ullrich-Lüter ◽  
M. Ina Arnone

AbstractOpsins are G protein-coupled receptors used for both visual and non-visual photoreception, and these proteins evolutionarily date back to the base of the bilaterians. In the current sequencing age, phylogenomic analysis has proven to be a powerful tool, facilitating the increase in knowledge about diversity within the opsin subclasses and, so far, nine paralogs have been identified. Within echinoderms, opsins have been studied in Echinoidea and Ophiuroidea, which do not possess proper image forming eyes, but rather widely dispersed dermal photoreceptors. However, most species of Asteroidea, the starfish, possess true eyes and studying them will shed light on the diversity of opsin usage within echinoderms and help resolve the evolutionary history of opsins. Using high-throughput RNA sequencing, we have sequenced and analyzed the transcriptomes of different Acanthaster planci tissue samples: eyes, radial nerve, tube feet and a mixture of tissues from other organs. At least ten opsins were identified, and eight of them were found significantly differentially expressed in both eyes and radial nerve, providing new important insight into the involvement of opsins in visual and nonvisual photoreception. Of relevance, we found the first evidence of an r-opsin photopigment expressed in a well developed visual eye in a deuterostome animal.


2019 ◽  
Author(s):  
Matthew Hartfield

AbstractGenome studies of facultative sexual species, which can either reproduce sexually or asexually, are providing insight into the evolutionary consequences of mixed reproductive modes. It is currently unclear to what extent the evolutionary history of facultative sexuals’ genomes can be approximated by the standard coalescent, and if a coalescent effective population size Ne exists. Here, I determine if and when these approximations can be made. When sex is frequent (occurring at a frequency much greater than 1/N per reproduction per generation, for N the actual population size), the underlying genealogy can be approximated by the standard coalescent, with a coalescent Ne ≈ N. When sex is very rare (at frequency much lower than 1/N), approximations for the pairwise coalescent time can be obtained, which is strongly influenced by the frequencies of sex and mitotic gene conversion, rather than N. However, these terms do not translate into a coalescent Ne. These results are used to discuss the best sampling strategies for investigating the evolutionary history of facultative sexual species.


Author(s):  
Andrew Briggs ◽  
Hans Halvorson ◽  
Andrew Steane

The chapter discusses the history of life on Earth, and the lessons to be learned from the neo-Darwinian synthesis of evolutionary biology. The long and complex sequence of events in the evolutionary history of life on Earth requires considered interpretation. The neo-Darwinian synthesis is well-supported by evidence and gives rich insight into this process, but does not itself furnish a complete explanation or understanding of living things. This is because a process of exploration can only explore; it cannot fully dictate and can only partially constrain what type of thing will be found. What is found is constrained by other considerations, such as what is possible, and what can make sense. A brief critique of some of Richard Dawkins’ work is given, and also of the movement known as ‘Intelligent Design’. Education policy is well served by a fair appraisal of informed opinion in this area.


Taxon ◽  
2011 ◽  
Vol 60 (5) ◽  
pp. 1295-1305 ◽  
Author(s):  
Arántzazu Molins ◽  
Gianluigi Bacchetta ◽  
Marcela Rosato ◽  
Josep A. Rosselló ◽  
Maria Mayol

2008 ◽  
Vol 42 ◽  
pp. 5-13
Author(s):  
William McNeill ◽  

The present paper remains modest in its scope: It seeks only to undertake some exploratory and preparatory investigations with a view to addressing a more difficult and far-reaching question. The issue, in brief, is the following: In the 1920s, Heidegger engages in an incisive and comprehensive critique of techn!, which I shall render here as “production” or “productive comportment,” arguing that it furnishes the foundation and horizon for Greek ontology, and by extension for the entire Western philosophical tradition, a horizon that is problematically reductive because the ontology it gives rise to understands the Being of beings in general in terms of independent presence-at-hand, the appropriate mode of access to which is theoretical apprehension. Not only philosophy and ontology, but science and its outgrowth, modern technicity—itself a monstrous transformation of techn!—would be an almost inexorable consequence of this fateful Greek beginning. The project of a “destructuring of the history of ontology” announced in Being and Time would seek to retrieve and to open up an entirely other dimension of Being, a dimension foreclosed by the Greek beginning and yet awaiting us precisely as the unthought of that beginning and the tradition to which it gave rise. The destructuring would take as its guiding thread an understanding of the Being of Dasein—designating the being that we ourselves in each case are—as radically temporal, never simply present-at-hand, and essentially inaccessible to theoretical apprehension. Yet the critical resource for this analytic of the Being of Dasein was, for the early Heidegger, itself provided by Greek philosophy: It was Aristotle’s insight into the Being of the human being as praxis, and its authentic mode of self-disclosure, phron!sis, that led Heidegger to see the radically different kind of temporality pertaining to human existence, by contrast with the theoretically ascertained time of nature as something present-at-hand, and provided a key insight into the essence of “truth” (aletheia) as unconcealment. Aristotle’s insight into this more primordial sense of aletheia or “truth” as the knowing self-disclosure of our radically temporal Being-in-the-world as praxis, as opposed to truth conceived as a property of logos, judgment, or theoretical knowledge, was a forgotten thread of Greek philosophy that could shed light upon the limits and foundations of the theoretical tradition that dominates the subsequent history of ontology.


Sign in / Sign up

Export Citation Format

Share Document