scholarly journals Cell size control driven by the circadian clock and environment in cyanobacteria

2018 ◽  
Vol 115 (48) ◽  
pp. E11415-E11424 ◽  
Author(s):  
Bruno M. C. Martins ◽  
Amy K. Tooke ◽  
Philipp Thomas ◽  
James C. W. Locke

How cells maintain their size has been extensively studied under constant conditions. In the wild, however, cells rarely experience constant environments. Here, we examine how the 24-h circadian clock and environmental cycles modulate cell size control and division timings in the cyanobacteriumSynechococcus elongatususing single-cell time-lapse microscopy. Under constant light, wild-type cells follow an apparent sizer-like principle. Closer inspection reveals that the clock generates two subpopulations, with cells born in the subjective day following different division rules from cells born in subjective night. A stochastic model explains how this behavior emerges from the interaction of cell size control with the clock. We demonstrate that the clock continuously modulates the probability of cell division throughout day and night, rather than solely applying an on−off gate to division, as previously proposed. Iterating between modeling and experiments, we go on to identify an effective coupling of the division rate to time of day through the combined effects of the environment and the clock on cell division. Under naturally graded light−dark cycles, this coupling narrows the time window of cell divisions and shifts divisions away from when light levels are low and cell growth is reduced. Our analysis allows us to disentangle, and predict the effects of, the complex interactions between the environment, clock, and cell size control.

2017 ◽  
Author(s):  
Bruno M. C. Martins ◽  
Amy K. Tooke ◽  
Philipp Thomas ◽  
James C. W. Locke

AbstractHow cells maintain their size has been extensively studied under constant conditions. In the wild, however, cells rarely experience constant environments. Here, we examine how the 24-hour circadian clock and environmental cycles modulate cell size control and division timings in the cyanobacteriumSynechococcus elongatususing single-cell time-lapse microscopy. Under constant light, wild type cells follow an apparent sizer-like principle. Closer inspection reveals that the clock generates two subpopulations, with cells born in the subjective day following different division rules from cells born in subjective night. A stochastic model explains how this behaviour emerges from the interaction of cell size control with the clock. We demonstrate that the clock continuously modulates the probability of cell division throughout day and night, rather than solely applying an on-off gate to division as previously proposed. Iterating between modelling and experiments, we go on to show that the combined effects of the environment and the clock on cell division are explained by an effective coupling function. Under naturally graded light-dark cycles, this coupling shifts cell division away from dusk and dawn, when light levels are low and cell growth is reduced. Our analysis allows us to disentangle, and predict the effects of, the complex interactions between the environment, clock, and cell size control.


2017 ◽  
Author(s):  
Abhyudai Singh

AbstractDiverse cell types employ mechanisms to maintain size homeostasis and minimize aberrant fluctuations in cell size. It is well known that exponential cellular growth can drive unbounded intercellular variations in cell size, if the timing of cell division is size independent. Hence coupling of division timing to size is an essential feature of size control. We formulate a stochastic model, where exponential cellular growth is coupled with random cell division events, and the rate at which division events occur increases as a power function of cell size. Interestingly, in spite of nonlinearities in the stochastic dynamical model, statistical moments of the newborn cell size can be determined in closed form, providing fundamental limits to suppression of size fluctuations. In particular, formulas reveal that the magnitude of fluctuations in the newborn size is determined by the inverse of the size exponent in the division rate, and this relationship is independent of other model parameters, such as the growth rate. We further expand these results to consider randomness in the partitioning of mother cell size among daughters at the time of division. The sensitivity of newborn size fluctuations to partitioning noise is found to monotonically decrease, and approach a non-zero value, with increasing size exponent in the division rate. Finally, we discuss how our analytical results provide limits on noise control in commonly used models for cell size regulation.


2019 ◽  
Vol 24 (12) ◽  
pp. 1083-1093 ◽  
Author(s):  
Angharad R. Jones ◽  
Leah R. Band ◽  
James A.H. Murray

2018 ◽  
Author(s):  
Ambroise Lambert ◽  
Aster Vanhecke ◽  
Anna Archetti ◽  
Seamus Holden ◽  
Felix Schaber ◽  
...  

AbstractRod-shaped bacteria typically grow first via sporadic and dispersed elongation along their lateral walls, then via a combination of zonal elongation and constriction at the division site to form the poles of daughter cells. Although constriction comprises up to half of the cell cycle, its impact on cell size control and homeostasis has rarely been considered. To reveal the roles of cell elongation and constriction in bacterial size regulation during cell division, we captured the shape dynamics ofCaulobacter crescentuswith time-lapse structured illumination microscopy and used molecular markers as cell-cycle landmarks. We perturbed constriction rate using a hyperconstriction mutant or fosfomycin inhibition. We report that constriction rate contributes to both size control and homeostasis, by determining elongation during constriction, and by compensating for variation in pre-constriction elongation on a single-cell basis.


2000 ◽  
Vol 3 (6) ◽  
pp. 488-492 ◽  
Author(s):  
Eva Kondorosi ◽  
François Roudier ◽  
Emmanuel Gendreau

2019 ◽  
Vol 117 (9) ◽  
pp. 1728-1738 ◽  
Author(s):  
Giuseppe Facchetti ◽  
Benjamin Knapp ◽  
Fred Chang ◽  
Martin Howard

Sign in / Sign up

Export Citation Format

Share Document