scholarly journals Encoding biological recognition in a bicomponent cell-membrane mimic

2019 ◽  
Vol 116 (12) ◽  
pp. 5376-5382 ◽  
Author(s):  
Cesar Rodriguez-Emmenegger ◽  
Qi Xiao ◽  
Nina Yu. Kostina ◽  
Samuel E. Sherman ◽  
Khosrow Rahimi ◽  
...  

Self-assembling dendrimers have facilitated the discovery of periodic and quasiperiodic arrays of supramolecular architectures and the diverse functions derived from them. Examples are liquid quasicrystals and their approximants plus helical columns and spheres, including some that disregard chirality. The same periodic and quasiperiodic arrays were subsequently found in block copolymers, surfactants, lipids, glycolipids, and other complex molecules. Here we report the discovery of lamellar and hexagonal periodic arrays on the surface of vesicles generated from sequence-defined bicomponent monodisperse oligomers containing lipid and glycolipid mimics. These vesicles, known as glycodendrimersomes, act as cell-membrane mimics with hierarchical morphologies resembling bicomponent rafts. These nanosegregated morphologies diminish sugar–sugar interactions enabling stronger binding to sugar-binding proteins than densely packed arrangements of sugars. Importantly, this provides a mechanism to encode the reactivity of sugars via their interaction with sugar-binding proteins. The observed sugar phase-separated hierarchical arrays with lamellar and hexagonal morphologies that encode biological recognition are among the most complex architectures yet discovered in soft matter. The enhanced reactivity of the sugar displays likely has applications in material science and nanomedicine, with potential to evolve into related technologies.

2003 ◽  
Vol 773 ◽  
Author(s):  
C. Tamerler ◽  
S. Dinçer ◽  
D. Heidel ◽  
N. Karagûler ◽  
M. Sarikaya

AbstractProteins, one of the building blocks in organisms, not only control the assembly in biological systems but also provide most of their complex functions. It may be possible to assemble materials for practical technological applications utilizing the unique advantages provided by proteins. Here we discuss molecular biomimetic pathways in the quest for imitating biology at the molecular scale via protein engineering. We use combinatorial biology protocols to select short polypeptides that have affinity to inorganic materials and use them in assembling novel hybrid materials. We give an overview of some of the recent developments of molecular engineering towards this goal. Inorganic surface specific proteins were identified by using cell surface and phage display technologies. Examples of metal and metal oxide specific polypeptides were represented with an emphasis on certain level of specificities. The recognition and self assembling characteristics of these inorganic-binding proteins would be employed in develeopment of hybrid multifunctional materials for novel bio- and nano-technological applications.


2020 ◽  
Vol 18 (9) ◽  
pp. 669-685
Author(s):  
Padmaker Pandey ◽  
Anamika Pandey ◽  
Shruti Singh ◽  
Nikhil Kant Shukla

A compromising and well-organized model system is needed for investigating the molecular behaviour of biomolecules as many transduction processes and biological recognition occur at biological surfaces. The application of techniques in interfacial surfaces like one molecule thick films has made a feasible and significant tool for modern scientific studies. Self Assembling Monolayers (SAMs) technology is a very useful means for producing monomolecular films of various biological molecules on different substrates. Carbon Nanotubes (CNTs) have length-to-diameter aspect ratio property which provides a large surface-to-volume ratio, making it an intensely capable material for biomolecular attachments. The incorporation of Carbon Nanotubes (CNTs) with biological systems forming functional assemblies has shown an explored area of research. Organo-sulfur mainly alkanethiol (CnH2n+1–SH) molecules get adsorbed onto CNTs. This phenomenon has grabbed a lot of attention because Self Assembling Monolayers (SAMs) of organo-sulfur compound acts as an example system for understanding important chemical, physical or biological processes.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Hong Choi ◽  
Isabelle Ruel ◽  
Rui Hao Leo Wang ◽  
Jacques Genest

High-density lipoprotein (HDL) particles, generated in the process of removing excess cellular cholesterol, play crucial roles in maintaining cholesterol homeostasis in arterial cells and in protecting the cardiovascular system from the development of atherosclerosis. Cholesterol-loaded cells increase their binding capacity to the HDL scaffolding protein, apolipoprotein A-I (ApoA-I), however, cell surface factors necessary for ApoA-I binding remains to be elucidated. To characterize cell membrane microdomains interacting with ApoA-I, primary human skin fibroblasts were incubated with ApoA-I for 1h at 4°C. After linking protein-protein interactions with a membrane-impermeable crosslinker, DTSSP, cells were subjected to homogenization. The cell homogenate was separated by a discontinuous sucrose gradient centrifugation and ten fractions were collected. ApoA-I-associated cell membrane fraction was located by immunoblotting for ApoA-I and organelle markers. Membrane-containing fractions were fragmented using sonication prior to immunoprecipitation of ApoA-I-associated microdomains using an anti-ApoA-I antibody. Major lipid classes present in the microdomains are phosphatidylcholine, phosphatidylserine, sphingomyelin and cholesterol. Two cell membrane proteins, caveolin and ABCA1, were excluded from the microdomains. These data suggest that ApoA-I bind to cholesterol-rich cell surface microdomains that are different from ABCA1 and caveolae domains. LC-MS/MS analysis identified the presence of 26 proteins in the microdomains. Among these, several desmosomal proteins, lipid binding proteins and protease inhibitors were identified. Overall, our results suggest that the initial binding of ApoA-I to cell surface occurs on the lateral sides of cell membranes where desmosomal proteins provide a binding site for ApoA-I, and that lipid binding proteins facilitate lipidation of ApoA-I while protease inhibitors protect ApoA-I and related proteins from degradation. In conclusion, we established a new method to isolate cell membrane microdomains interacting with ApoA-I. Using this method, we found that ApoA-I associates with desmosomal proteins for the formation of HDL.


2019 ◽  
Vol 10 (32) ◽  
pp. 7610-7618 ◽  
Author(s):  
Wenjin Xiao ◽  
Thomas I. P. Green ◽  
Xiaowen Liang ◽  
Rosalia Cuahtecontzi Delint ◽  
Guillaume Perry ◽  
...  

We present a new cell membrane modification methodology where the inherent heart tissue homing properties of the infectious bacteriaStreptococcus gordoniiare transferred to human stem cells.


2000 ◽  
Vol 150 (2) ◽  
pp. 293-308 ◽  
Author(s):  
S. Homburg ◽  
L. Visochek ◽  
N. Moran ◽  
F. Dantzer ◽  
E. Priel ◽  
...  

We present the first evidence for a fast activation of the nuclear protein poly(ADP-ribose) polymerase (PARP) by signals evoked in the cell membrane, constituting a novel mode of signaling to the cell nucleus. PARP, an abundant, highly conserved, chromatin-bound protein found only in eukaryotes, exclusively catalyzes polyADP-ribosylation of DNA-binding proteins, thereby modulating their activity. Activation of PARP, reportedly induced by formation of DNA breaks, is involved in DNA transcription, replication, and repair. Our findings demonstrate an alternative mechanism: a fast activation of PARP, evoked by inositol 1,4,5,-trisphosphate–Ca2+ mobilization, that does not involve DNA breaks. These findings identify PARP as a novel downstream target of phospholipase C, and unveil a novel fast signal–induced modification of DNA-binding proteins by polyADP-ribosylation.


1992 ◽  
Vol 292 ◽  
Author(s):  
Kevin P. McGrath ◽  
David L. Kaplan

AbstractA new approach to materials design is presented, utilizing specific recognition and assembly at the molecular level. The approach described exploits the control over polymer chain microstructure afforded by biosynthesis to produce proteinbased materials with precisely defined physical properties. Incorporated into these materials are recognition elements that stringently control the placement and organization of each chain within higher order superstructures. The proteins, designated Recognin A2 through Recognin E2, are recombinant polypeptides designed de novo from both natural consensus sequences and an appreciation of the physical principles governing biological recognition. These materials are designed to examine the forces involved in specific recognition and complexation. through control of charge identity and placement, a pattern for specific interaction can be introduced. A subset of these materials are programmed to spontaneously assemble into complex, multicomponent structures and represent the first step in a rational approach to nanometer-scale structural design.


Sign in / Sign up

Export Citation Format

Share Document