interfacial surfaces
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sang-Yeop Chung ◽  
Yun Hyeong Kim ◽  
Yong Kwon Chae ◽  
Su-Sung Jo ◽  
Sung Chul Choi ◽  
...  

Abstract Background Internal voids of materials can serve a hub for microorganism and affect the sealing ability. This study aimed to evaluate the sealing performance of calcium silicate-based cements in immature teeth treated with regenerative endodontics. Methods Twenty single root canals from immature permanent premolars were prepared using regenerative endodontic protocols. The root canals were randomly divided into two groups and sealed with mineral trioxide aggregate (MTA) and Biodentine (BD). The teeth were kept in humid environment for 7 days and scanned using micro-computed tomography. The voids within the cements were segmented and visualized using image processing, incorporating the modified Otsu algorithm. The porosity of each sample was also calculated as the ratio between the number of voxels of voids and the volume of the cements. Tortuosity was also calculated using the A-star algorithm. Results Voids larger than 70 μm were predominantly observed in the top and interfacial surface of cements. The others were evenly distributed. MTA and BD showed the same level of porosity and tortuosity at interfacial surfaces. In inner surfaces, MTA showed more less porosity and tortuosity compared to BD (p < 0.05). Conclusions There were no differences in sealing performance between MTA and BD.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 914
Author(s):  
Kornelius Zeth ◽  
Gabriela Pretre ◽  
Mitsuhiro Okuda

Cage-shaped protein (CSP) complexes are frequently used in bionanotechnology, and they have a variety of different architectures and sizes. The smallest cage-shaped protein, Dps (DNA binding protein from starved cells), can naturally form iron oxide biominerals in a multistep process of ion attraction, translocation, oxidation, and nucleation. The structural basis of this biomineralization mechanism is still unclear. The aim of this paper is to further develop understanding of this topic. Time-resolved metal translocation of Yb3+ ions has been investigated on Dps surfaces using X-ray crystallography. The results reveal that the soak time of protein crystals with Yb3+ ions strongly affects metal positions during metal translocation, in particular, around and inside the ion translocation pore. We have trapped a dynamic state with ongoing translocation events and compared this to a static state, which is reached when the cavity of Dps is entirely filled by metal ions and translocation is therefore blocked. By comparison with La3+ and Co2+ datasets, the time-dependence together with the coordination sphere chemistry primarily determine metalprotein interactions. Our data can allow structure-based protein engineering to generate CSPs for the production of tailored nanoparticles.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
C. R. Woods ◽  
P. Ares ◽  
H. Nevison-Andrews ◽  
M. J. Holwill ◽  
R. Fabregas ◽  
...  

AbstractWhen two-dimensional crystals are brought into close proximity, their interaction results in reconstruction of electronic spectrum and crystal structure. Such reconstruction strongly depends on the twist angle between the crystals, which has received growing attention due to interesting electronic and optical properties that arise in graphene and transitional metal dichalcogenides. Here we study two insulating crystals of hexagonal boron nitride stacked at small twist angle. Using electrostatic force microscopy, we observe ferroelectric-like domains arranged in triangular superlattices with a large surface potential. The observation is attributed to interfacial elastic deformations that result in out-of-plane dipoles formed by pairs of boron and nitrogen atoms belonging to opposite interfacial surfaces. This creates a bilayer-thick ferroelectric with oppositely polarized (BN and NB) dipoles in neighbouring domains, in agreement with our modeling. These findings open up possibilities for designing van der Waals heterostructures and offer an alternative probe to study moiré-superlattice electrostatic potentials.


2020 ◽  
Vol 18 (9) ◽  
pp. 669-685
Author(s):  
Padmaker Pandey ◽  
Anamika Pandey ◽  
Shruti Singh ◽  
Nikhil Kant Shukla

A compromising and well-organized model system is needed for investigating the molecular behaviour of biomolecules as many transduction processes and biological recognition occur at biological surfaces. The application of techniques in interfacial surfaces like one molecule thick films has made a feasible and significant tool for modern scientific studies. Self Assembling Monolayers (SAMs) technology is a very useful means for producing monomolecular films of various biological molecules on different substrates. Carbon Nanotubes (CNTs) have length-to-diameter aspect ratio property which provides a large surface-to-volume ratio, making it an intensely capable material for biomolecular attachments. The incorporation of Carbon Nanotubes (CNTs) with biological systems forming functional assemblies has shown an explored area of research. Organo-sulfur mainly alkanethiol (CnH2n+1–SH) molecules get adsorbed onto CNTs. This phenomenon has grabbed a lot of attention because Self Assembling Monolayers (SAMs) of organo-sulfur compound acts as an example system for understanding important chemical, physical or biological processes.


Author(s):  
F. Yeganehdoust ◽  
I. Karimfazli ◽  
A. Dolatabadi

Spontaneous bouncing of a droplet that impacts a surface is a mechanism that occurs for the moderate range of droplet impact velocities and is caused by the formation of a stable air layer (cushion) between the droplet and the surface. This bouncing behavior is more pronounced on Lubricant Impregnated Surfaces (LISs) inspired by the natural non-wetting surface of the pitcher plant, which relies on the stable formation of a thin lubricant film across its surface. In this study, we performed modeling of the water-oil–air interfacial surfaces using the volume of fluid (VOF) methodology to simulate the impact of a water droplet onto a lubricant smooth surface with an oil as the lubricant. To resolve the effects of the air surrounding the droplet, computational cells were extensively small to capture the presence of the sub-micron layer of air trapped underneath the droplet during the impact. The model was able to capture the initiation and subsequent effect of the air cushion on the droplet hydrodynamics. We found that the stability of the air cushion and the impact dynamics are independent of the oil viscosity for specific thicknesses of lubricant layers, whereas the impact conditions such as velocity and droplet properties played a significant role on the outcome of droplet impact. Hence, the dynamics of a droplet falling on a specific thickness of oil film was influenced by the squeezed air trapped between the two immiscible fluid (water and oil). In addition, the formation of high pressure dimple region was evident, which in some cases lead to entrapment of the air bubble. Finally, we validated the results with the existing experimental data in the literature.


2015 ◽  
Vol 112 (13) ◽  
pp. E1604-E1613 ◽  
Author(s):  
Kyung-Ho Roh ◽  
Björn F. Lillemeier ◽  
Feng Wang ◽  
Mark M. Davis

CD4 molecules on the surface of T lymphocytes greatly augment the sensitivity and activation process of these cells, but how it functions is not fully understood. Here we studied the spatial organization of CD4, and its relationship to T-cell antigen receptor (TCR) and the active form of Src kinase p56lck (Lck) using single and dual-color photoactivated localization microscopy (PALM) and direct stochastic optical reconstruction microscopy (dSTORM). In nonactivated T cells, CD4 molecules are clustered in small protein islands, as are TCR and Lck. By dual-color imaging, we find that CD4, TCR, and Lck are localized in their separate clusters with limited interactions in the interfaces between them. Upon T-cell activation, the TCR and CD4 begin clustering together, developing into microclusters, and undergo a larger scale redistribution to form supramolecluar activation clusters (SMACs). CD4 and Lck localize in the inner TCR region of the SMAC, but this redistribution of disparate cluster structures results in enhanced segregation from each other. In nonactivated cells these preclustered structures and the limited interactions between them may serve to limit spontaneous and random activation events. However, the small sizes of these island structures also ensure large interfacial surfaces for potential interactions and signal amplification when activation is initiated. In the later activation stages, the increasingly larger clusters and their segregation from each other reduce the interfacial surfaces and could have a dampening effect. These highly differentiated spatial distributions of TCR, CD4, and Lck and their changes during activation suggest that there is a more complex hierarchy than previously thought.


2015 ◽  
Vol 1793 ◽  
pp. 35-40 ◽  
Author(s):  
Annalese F. Maddox ◽  
Janis G. Matisons ◽  
Mani Singh ◽  
Joel Zazyczny ◽  
Barry Arkles

ABSTRACTThe surfaces of inorganic substrates containing hydroxyl groups can be adapted to a variety of physical and chemical requirements by reaction with cyclic azasilanes. The moderately-strained ring structure of cyclic azasilanes containing adjacent Si and N atoms, along with the high oxophilicity of silicon, enables the high reactivity towards available hydroxyl groups on all siliceous surfaces investigated, including amorphous silica and borosilicate glass. The reaction occurs quantitatively at room temperature, requires no catalyst and has no byproducts. This investigation looks specifically at the reaction kinetics by means of DRIFT spectroscopy and quantifies extent of reaction by TGA. The less sterically-hindered the Si–N bond, the faster the reaction occurs. In all cases, the reaction is essentially complete in less than one minute. This study provides the first confirmation that the rate and extent of reaction without catalysis or byproducts of cyclic azasilanes conforms to the Sharpless requirements for “click chemistry” and can be deemed “click chemistry for surfaces.”


2012 ◽  
Vol 3 (5) ◽  
pp. 81 ◽  
Author(s):  
Ana Mª Charquero Ballester ◽  
Jordi A. López Lillo

<p>In this paper a stratigraphic recording methodology is presented after a practial experience at the lo Boligni archaeological site. This experience has allowed, on the basis of cenital stereo-photo pairs, the digitalization of interfacial surfaces through high density point clouds renderization as the excavation went on, in order to obtain a Three-dimmensional Cummulative Model (TCM) of the stratigraphical sequence. It will be exposed the way some easy and affordable digital tools are used at the excavation in order to achieve a massive data recovery, and how their integration in CAD and GIS environments opens new possibilities for the everyday archaeological information treatement.</p>


Sign in / Sign up

Export Citation Format

Share Document