scholarly journals Premature termination codons in theDMDgene cause reduced local mRNA synthesis

2020 ◽  
Vol 117 (28) ◽  
pp. 16456-16464 ◽  
Author(s):  
Raquel García-Rodríguez ◽  
Monika Hiller ◽  
Laura Jiménez-Gracia ◽  
Zarah van der Pal ◽  
Judit Balog ◽  
...  

Duchenne muscular dystrophy (DMD) is caused by mutations in theDMDgene leading to the presence of premature termination codons (PTC). Previous transcriptional studies have shown reduced DMD transcript levels in DMD patient and animal model muscles when PTC are present. Nonsense-mediated decay (NMD) has been suggested to be responsible for the observed reduction, but there is no experimental evidence supporting this claim. In this study, we aimed to investigate the mechanism responsible for the drop inDMDexpression levels in the presence of PTC. We observed that the inhibition of NMD does not normalizeDMDgene expression in DMD. Additionally, in situ hybridization showed that DMD messenger RNA primarily localizes in the nuclear compartment, confirming that a cytoplasmic mechanism like NMD indeed cannot be responsible for the observed reduction. Sequencing of nascent RNA to exploreDMDtranscription dynamics revealed a lower rate ofDMDtranscription in patient-derived myotubes compared to healthy controls, suggesting a transcriptional mechanism involved in reduced DMD transcript levels. Chromatin immunoprecipitation in muscle showed increased levels of the repressive histone mark H3K9me3 inmdxmice compared to wild-type mice, indicating a chromatin conformation less prone to transcription inmdxmice. In line with this finding, treatment with the histone deacetylase inhibitor givinostat caused a significant increase in DMD transcript expression inmdxmice. Overall, our findings show that transcription dynamics across theDMDlocus are affected by the presence of PTC, hinting at a possible epigenetic mechanism responsible for this process.

2002 ◽  
Vol 115 (15) ◽  
pp. 3033-3038 ◽  
Author(s):  
Eileen Wagner ◽  
Jens Lykke-Andersen

In eukaryotes, an elaborate set of mechanisms has evolved to ensure that the multistep process of gene expression is accurately executed and adapted to cellular needs. The mRNA surveillance pathway works in this context by assessing the quality of mRNAs to ensure that they are suitable for translation. mRNA surveillance facilitates the detection and destruction of mRNAs that contain premature termination codons by a process called nonsense-mediated decay. Moreover, recent studies have shown that a distinct mRNA surveillance process, called nonstop decay, is responsible for depleting mRNAs that lack in-frame termination codons. mRNA surveillance thereby prevents the synthesis of truncated and otherwise aberrant proteins, which can have dominant-negative and other deleterious effects.


2021 ◽  
Author(s):  
Karole N D'Orazio ◽  
Laura N. Lessen ◽  
Anthony J. Veltri ◽  
Zachary Neiman ◽  
Miguel E. Pacheco ◽  
...  

The decay of messenger RNA with a premature termination codon (PTC) by nonsense mediated decay (NMD) is an important regulatory pathway for eukaryotes and an essential pathway in mammals. NMD is typically triggered by the ribosome terminating at a stop codon that is aberrantly distant from the poly-A tail. Here, we use a fluorescence screen to identify factors involved in NMD in S. cerevisiae . In addition to the known NMD factors, including the entire UPF family (UPF1, UPF2 and UPF3), as well as NMD4 and EBS1 , we identify factors known to function in post-termination recycling and characterize their contribution to NMD. We then use a series of modified reporter constructs that block both elongating and scanning ribosomes downstream of stop codons and demonstrate that a deficiency in recycling of 80S ribosomes or 40S subunits stabilizes NMD substrates. These observations in S. cerevisiae expand on recently reported data in mammals indicating that the 60S recycling factor ABCE1 is important for NMD (1,2) by showing that increased activities of both elongating and scanning ribosomes (80S or 40S) in the 3’UTR correlate with a loss of NMD.


2002 ◽  
Vol 22 (23) ◽  
pp. 8114-8121 ◽  
Author(s):  
Jens Lykke-Andersen

ABSTRACT Decapping is a key step in general and regulated mRNA decay. In Saccharomyces cerevisiae it constitutes a rate-limiting step in the nonsense-mediated decay pathway that rids cells of mRNAs containing premature termination codons. Here two human decapping enzymes are identified, hDcp1a and hDcp2, as well as a homolog of hDcp1a, termed hDcp1b. Transiently expressed hDcp1a and hDcp2 proteins localize primarily to the cytoplasm and form a complex in human cell extracts. hDcp1a and hDcp2 copurify with decapping activity, an activity sensitive to mutation of critical hDcp residues. Importantly, coimmunoprecipitation assays demonstrate that hDcp1a and hDcp2 interact with the nonsense-mediated decay factor hUpf1, both in the presence and in the absence of the other hUpf proteins, hUpf2, hUpf3a, and hUpf3b. These data suggest that a human decapping complex may be recruited to mRNAs containing premature termination codons by the hUpf proteins.


1998 ◽  
Vol 11 (S1) ◽  
pp. S34-S37 ◽  
Author(s):  
Leena Karttunen ◽  
Tarja Ukkonen ◽  
Katariina Kainulainen ◽  
Ann-Christine Syvänen ◽  
Leena Peltonen

Author(s):  
G. W. Hacker ◽  
I. Zehbe ◽  
J. Hainfeld ◽  
A.-H. Graf ◽  
C. Hauser-Kronberger ◽  
...  

In situ hybridization (ISH) with biotin-labeled probes is increasingly used in histology, histopathology and molecular biology, to detect genetic nucleic acid sequences of interest, such as viruses, genetic alterations and peptide-/protein-encoding messenger RNA (mRNA). In situ polymerase chain reaction (PCR) (PCR in situ hybridization = PISH) and the new in situ self-sustained sequence replication-based amplification (3SR) method even allow the detection of single copies of DNA or RNA in cytological and histological material. However, there is a number of considerable problems with the in situ PCR methods available today: False positives due to mis-priming of DNA breakdown products contained in several types of cells causing non-specific incorporation of label in direct methods, and re-diffusion artefacts of amplicons into previously negative cells have been observed. To avoid these problems, super-sensitive ISH procedures can be used, and it is well known that the sensitivity and outcome of these methods partially depend on the detection system used.


2021 ◽  
Vol 42 (5) ◽  
pp. 551-566
Author(s):  
Sandra Luna ◽  
Leire Torices ◽  
Janire Mingo ◽  
Laura Amo ◽  
Isabel Rodríguez‐Escudero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document