scholarly journals Correction for Piccardo et al., Radio frequency transmitter based on a laser frequency comb

2019 ◽  
Vol 116 (35) ◽  
pp. 17598-17598
2019 ◽  
Vol 116 (19) ◽  
pp. 9181-9185 ◽  
Author(s):  
Marco Piccardo ◽  
Michele Tamagnone ◽  
Benedikt Schwarz ◽  
Paul Chevalier ◽  
Noah A. Rubin ◽  
...  

Since the days of Hertz, radio transmitters have evolved from rudimentary circuits emitting around 50 MHz to modern ubiquitous Wi-Fi devices operating at gigahertz radio bands. As wireless data traffic continues to increase, there is a need for new communication technologies capable of high-frequency operation for high-speed data transfer. Here, we give a proof of concept of a compact radio frequency transmitter based on a semiconductor laser frequency comb. In this laser, the beating among the coherent modes oscillating inside the cavity generates a radio frequency current, which couples to the electrodes of the device. We show that redesigning the top contact of the laser allows one to exploit the internal oscillatory current to drive a dipole antenna, which radiates into free space. In addition, direct modulation of the laser current permits encoding a signal in the radiated radio frequency carrier. Working in the opposite direction, the antenna can receive an external radio frequency signal, couple it to the active region, and injection lock the laser. These results pave the way for applications and functionality in optical frequency combs, such as wireless radio communication and wireless synchronization to a reference source.


2022 ◽  
Author(s):  
Yueting Zhou ◽  
Gang Zhao ◽  
Jianxin Liu ◽  
Xiaojuan Yan ◽  
Zhixin Li ◽  
...  

Abstract The laser frequency could be linked to an radio frequency through an external cavity by the combination of Pound-Drever-Hall and Devoe-Brewer locking techniques. A stable and tunable optical frequency at wavelength of 1.5 μm obtained by a cavity with high finesse of 96,000 and a fiber laser, calibrated by a commercial optical frequency comb, has been demonstrated. The locking performances have been analyzed by in-loop and out-loop noises, indicating that the absolute frequency instability could be down to 50 kHz over 1 s and keep to less than 110 kHz over 2.5 h. Then, the application of this stabilized laser to the direct absorption spectroscopy has been performed. With the help of balanced detection, the detection sensitivity, in terms of optical density, can reach to 9.4×10-6.


2021 ◽  
pp. 2000417
Author(s):  
Luigi Consolino ◽  
Annamaria Campa ◽  
Michele De Regis ◽  
Francesco Cappelli ◽  
Giacomo Scalari ◽  
...  

2014 ◽  
Vol 14 (8) ◽  
pp. 1037-1045 ◽  
Author(s):  
Fei Zhao ◽  
Gang Zhao ◽  
Gaspare Lo Curto ◽  
Hui-Juan Wang ◽  
Yu-Juan Liu ◽  
...  

2016 ◽  
Vol 733 ◽  
pp. 012058 ◽  
Author(s):  
I L M Silva ◽  
I B Couceiro ◽  
M A C Torres ◽  
P A Costa ◽  
H P H Grieneisen

2007 ◽  
Vol 15 (19) ◽  
pp. 12161 ◽  
Author(s):  
Parama Pal ◽  
Wayne H. Knox ◽  
Ingmar Hartl ◽  
Martin E. Fermann

2021 ◽  
Author(s):  
Urban Senica ◽  
Tudor Olariu ◽  
Paolo Micheletti ◽  
Mattias Beck ◽  
Jérôme Faist ◽  
...  

2020 ◽  
Vol 645 ◽  
pp. A23
Author(s):  
F. Zhao ◽  
G. Lo Curto ◽  
L. Pasquini ◽  
J. I. González Hernández ◽  
J. R. De Medeiros ◽  
...  

Aims. We study the 2D spectral line profile of the High Accuracy Radial Velocity Planet Searcher (HARPS), measuring its variation with position across the detector and with changing line intensity. The characterization of the line profile and its variations are important for achieving the precision of the wavelength scales of 10−10 or 3.0 cm s−1 necessary to detect Earth-twins in the habitable zone around solar-like stars. Methods. We used a laser frequency comb (LFC) with unresolved and unblended lines to probe the instrument line profile. We injected the LFC light – attenuated by various neutral density filters – into both the object and the reference fibres of HARPS, and we studied the variations of the line profiles with the line intensities. We applied moment analysis to measure the line positions, widths, and skewness as well as to characterize the line profile distortions induced by the spectrograph and detectors. Based on this, we established a model to correct for point spread function distortions by tracking the beam profiles in both fibres. Results. We demonstrate that the line profile varies with the position on the detector and as a function of line intensities. This is consistent with a charge transfer inefficiency effect on the HARPS detector. The estimate of the line position depends critically on the line profile, and therefore a change in the line amplitude effectively changes the measured position of the lines, affecting the stability of the wavelength scale of the instrument. We deduce and apply the correcting functions to re-calibrate and mitigate this effect, reducing it to a level consistent with photon noise.


Sign in / Sign up

Export Citation Format

Share Document