direct absorption spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Yueting Zhou ◽  
Gang Zhao ◽  
Jianxin Liu ◽  
Xiaojuan Yan ◽  
Zhixin Li ◽  
...  

Abstract The laser frequency could be linked to an radio frequency through an external cavity by the combination of Pound-Drever-Hall and Devoe-Brewer locking techniques. A stable and tunable optical frequency at wavelength of 1.5 μm obtained by a cavity with high finesse of 96,000 and a fiber laser, calibrated by a commercial optical frequency comb, has been demonstrated. The locking performances have been analyzed by in-loop and out-loop noises, indicating that the absolute frequency instability could be down to 50 kHz over 1 s and keep to less than 110 kHz over 2.5 h. Then, the application of this stabilized laser to the direct absorption spectroscopy has been performed. With the help of balanced detection, the detection sensitivity, in terms of optical density, can reach to 9.4×10-6.


Instruments ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 12
Author(s):  
Hannes C. Gottschalk ◽  
Taija L. Fischer ◽  
Volker Meyer ◽  
Reinhard Hildebrandt ◽  
Ulrich Schmitt ◽  
...  

Fourier transform infrared (FTIR) absorption spectroscopy of cold molecules and clusters in supersonic slit jet expansions complements and extends more sensitive action spectroscopy techniques and provides important reference data for the latter. We describe how its major drawback, large substance and carrier gas consumption, can be alleviated by one to two orders of magnitude via direct and continuous recycling of the gas mixture. This is achieved by a combination of dry rotary lobe and screw pump compression. The signal-to-noise ratio is boosted by the established buffered giant gas pulse technique with full interferogram synchronization. The buildup of water impurities typically limits the recycling gain, but is turned into a feature for the study of hydrate complexes of volatile molecules. Continuous operation with a single gas filling over several days becomes practical and useful. Decadic absorbances in the low ppm range are detectable and the mid infrared range can be recorded simultaneously with the near infrared. The less straightforward hydration number assignment of spectral features in direct absorption spectroscopy is supported by a gradual water buildup at a rate of less than 0.5 mg/h. A recent reassignment proposal for the water dimer OH stretching spectrum is refuted and vibrational spectra of vacuum-isolated 18O-water clusters are presented for the first time. Methanol docking on asymmetric ketones is used to illustrate the advantages and limitations of the recycling concept. Previous assignments of the hydrate complex of 1-phenylethanol are confirmed. Additional features of the setup await testing and refinement, but the recycling technique already substantially widens the applicability of direct absorption spectroscopy of neutral molecular clusters. It may be attractive for other high-throughput jet spectrometers.


2021 ◽  
Vol 10 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Thomas Strahl ◽  
Johannes Herbst ◽  
Eric Maier ◽  
Sven Rademacher ◽  
Christian Weber ◽  
...  

Abstract. The measurement of low methane (CH4) concentrations is a key objective for safety of industrial and public infrastructures and in environmental research. Laser spectroscopy is best suited for this purpose because it offers high sensitivity, selectivity, dynamic range, and a fast measurement rate. The physical basis of this technique is infrared absorption of molecular gases. Two detection schemes – direct absorption spectroscopy (DAS) and photoacoustic spectroscopy (PAS) – are compared at three wavelength regions in the near-infrared (NIR), mid-wavelength (MWIR), and long-wavelength (LWIR) infrared ranges. For each spectral range a suitable semiconductor laser is selected and used for both detection techniques: a diode laser (DL), an interband cascade laser (ICL), and a quantum cascade laser (QCL) for NIR, MWIR and LWIR, respectively. For DAS short absorption path lengths comparable to the cell dimensions of the photoacoustic cell for PAS are employed. We show that for DAS the lowest detection limit can be achieved in the MWIR range with noise-equivalent concentrations (NECs) below 10 ppb. Using PAS, lower detection limits and higher system stabilities can be reached compared to DAS, especially for long integration times. The lowest detection limit for PAS is obtained in the LWIR with a NEC of 7 ppb. The different DAS and PAS configurations are discussed with respect to potential applications.


Author(s):  
Hannes Gottschalk ◽  
Taija Fischer ◽  
Volker Meyer ◽  
Reinhard Hildebrandt ◽  
Ulrich Schmitt ◽  
...  

Fourier transform infrared (FTIR) absorption spectroscopy of cold molecules and clusters in supersonic slit jet expansions complements and extends more sensitive action spectroscopy techniques and provides important reference data for the latter. We describe how its major drawback, large substance and carrier gas consumption, can be alleviated by one to two orders of magnitude via direct and continuous recycling of the gas mixture. This is achieved by a combination of dry rotary lobe and screw pump compression. The signal-to-noise ratio is boosted by the established buffered giant gas pulse technique with full interferogram synchronization. The buildup of water impurities typically limits the recycling gain, but is turned into a feature for the study of hydrate complexes of volatile molecules. Continuous operation with a single gas filling over several days becomes practical and useful. Decadic absorbances in the low ppm range are detectable and the mid infrared range can be recorded simultaneously with the near infrared. The less straightforward hydration number assignment of spectral features in direct absorption spectroscopy is supported by a gradual water buildup at a rate of less than 0.5 mg/h. A recent reassignment proposal for the water dimer OH stretching spectrum is refuted and vibrational spectra of vacuum-isolated 18O-water clusters are presented for the first time. Methanol docking on asymmetric ketones is used to illustrate the advantages and limitations of the recycling concept. Previous assignments of the hydrate complex of 1-phenylethanol are confirmed. Additional features of the setup await testing and refinement, but the recycling technique already substantially widens the applicability of direct absorption spectroscopy of neutral molecular clusters. It may be attractive for other high-throughput jet spectrometers.


2020 ◽  
Vol 13 (11) ◽  
pp. 6095-6112
Author(s):  
Petter Weibring ◽  
Dirk Richter ◽  
James G. Walega ◽  
Alan Fried ◽  
Joshua DiGangi ◽  
...  

Abstract. An airborne trace gas sensor based on mid-infrared technology is presented for fast (1 s) and high-precision ethane measurements during the Atmospheric Carbon and Transport-America (ACT-America) study. The ACT-America campaign is a multiyear effort to better understand and quantify sources and sinks for the two major greenhouse gases carbon dioxide and methane. Simultaneous airborne ethane and methane measurements provide one method by which sources of methane can be identified and quantified. The instrument described herein was operated on NASA's B200 King Air airplane spanning five separate field deployments. As this platform has limited payload capabilities, considerable effort was devoted to minimizing instrument weight and size without sacrificing airborne ethane measurement performance. This paper describes the numerous features designed to achieve these goals. Two of the key instrument features that were realized were autonomous instrument control with no onboard operator and the implementation of direct absorption spectroscopy based on fundamental first principles. We present airborne measurement performance for ethane based upon the precisions of zero air background measurements and ambient precision during quiescent stable periods. The airborne performance was improved with each successive deployment phase, and we summarize the major upgraded design features to achieve these improvements. During the fourth deployment phase in the spring of 2018, the instrument achieved 1 s (1σ) airborne ethane precisions reproducibly in the 30–40 parts per trillion by volume (pptv) range in both the boundary layer and the less turbulent free troposphere. This performance is among some of the best reported to date for fast (1 Hz) airborne ethane measurements. In both the laboratory conditions and at times during calm and level airborne operation, these precisions were as low as 15–20 pptv.


2020 ◽  
Author(s):  
Petter Weibring ◽  
Dirk Richter ◽  
James G. Walega ◽  
Alan Fried ◽  
Joshua DiGangi ◽  
...  

Abstract. An airborne trace gas sensor based on mid-infrared technology is presented for fast (1-second) and high precision ethane measurements during the Atmospheric Carbon and Transport-America (ACT-America) study. The ACT-America campaign is a multi-year effort to better understand and quantify sources and sinks for the two major greenhouse gases carbon dioxide and methane. Simultaneous airborne ethane and methane measurements provide one method by which sources of methane can be identified and quantified. The instrument described herein was operated on NASA's B200 King Air airplane spanning five separate field deployments. As this platform has limited payload capabilities, considerable effort was devoted to minimizing instrument weight and size without sacrificing airborne ethane measurement performance. This paper describes the numerous features designed to achieve these goals. Two of the key instrument features that were realized were autonomous instrument control with no on-board operator and the implementation of direct absorption spectroscopy based on fundamental first principles. We present airborne measurement performance for ethane based upon the precisions of zero air background measurements as well as ambient precision during quiescent stable periods. The airborne performance was improved with each successive deployment phase, and we summarize the major upgraded design features to achieve these improvements. During the 4th deployment phase, in the spring of 2018, the instrument achieved 1-second (1σ) airborne ethane precisions reproducibly in the 30–40 parts-per-trillion by volume (pptv) range in both the boundary layer and the less turbulent free troposphere. This performance is among some of the best reported to date for fast (1 Hz) airborne ethane measurements. In both the laboratory conditions and at times during calm and level airborne operation these precisions were as low as 15–20 pptv.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 681 ◽  
Author(s):  
Zhimin Peng ◽  
Yanjun Du ◽  
Yanjun Ding

The absorbance is of great importance in the tunable diode laser absorption spectroscopy (TDLAS) as it contains information of both gas properties and spectroscopic parameters. A novel, calibration-free wavelength modulation-direct absorption spectroscopy (WM-DAS) is proposed and experimentally verified in this two-part paper. This method combines the capability of absorbance measurement from DAS and the advantages of enhanced noise rejection and high sensitivity from WMS. In this Part I, we focus on the full theoretical basis and procedures of this method from the following three aspects: the high-accuracy characterizations of laser frequency and intensity, noise rejection ability by extracting the characteristic spectra through the fast Fourier transform (FFT) of the light intensity, and the simultaneous fitting strategy for both baseline and absorbance. The preliminary validation experiment of CO transition at 4300.6999 cm−1 in a static gas cell shows the high accuracy of the proposed method.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 616 ◽  
Author(s):  
Zhimin Peng ◽  
Yanjun Du ◽  
Yanjun Ding

Following the theoretical work in Part I, in this experimental study, the robustness, temporal resolution, and the narrow scan performance of the proposed wavelength modulation-direct absorption spectroscopy (WM-DAS) method are experimentally validated in a high-temperature tube furnace. The electromagnetic and other random-frequency noises can be effectively eliminated by extracting the characteristic spectra of the light intensity. The performance of WM-DAS with modulation frequencies from 0.1 to 100 kHz and scan indexes from 3.3 to 11.1 are also investigated at atmospheric pressure. The proposed method produces accurate line profile and high SNR over 500 consistently even with a weak absorption. As for real applications, the spectral line parameters of CO at 4300.6999 cm−1 including the collisional broadening, Dicke narrowing, and their dependence on temperature are measured. Furthermore, the high-speed measurement (1 ms) of the temperature and CO concentration of a McKenna flat flame are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document