scholarly journals Growth and arrest of topological cycles in small physical networks

2020 ◽  
Vol 117 (27) ◽  
pp. 15394-15396
Author(s):  
Timothy W. Sirk

The chordless cycle sizes of spatially embedded networks are demonstrated to follow an exponential growth law similar to random graphs if the number of nodesNxis below a critical valueN*. For covalent polymer networks, increasing the network size, as measured by the number of cross-link nodes, beyondN*results in a crossover to a new regime in which the characteristic size of the chordless cyclesh*no longer increases. From this result, the onset and intensity of finite-size effects can be predicted from measurement ofh*in large networks. Although such information is largely inaccessible with experiments, the agreement of simulation results from molecular dynamics, Metropolis Monte Carlo, and kinetic Monte Carlo suggests the crossover is a fundamental physical feature which is insensitive to the details of the network generation. These results show random graphs as a promising model to capture structural differences in confined physical networks.

2017 ◽  
Vol 6 (12) ◽  
pp. 1414-1419 ◽  
Author(s):  
Rui Wang ◽  
Tzyy-Shyang Lin ◽  
Jeremiah A. Johnson ◽  
Bradley D. Olsen

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1156 ◽  
Author(s):  
Grigorios Megariotis ◽  
Georgios Vogiatzis ◽  
Aristotelis Sgouros ◽  
Doros Theodorou

In previous work by the authors, a new methodology was developed for Brownian dynamics/kinetic Monte Carlo (BD/kMC) simulations of polymer melts. In this study, this methodology is extended for dynamical simulations of crosslinked polymer networks in a coarse-grained representation, wherein chains are modeled as sequences of beads, each bead encompassing a few Kuhn segments. In addition, the C++ code embodying these simulations, entitled Engine for Mesoscopic Simulations for Polymer Networks (EMSIPON) is described in detail. A crosslinked network of cis-1,4-polyisoprene is chosen as a test system. From the thermodynamic point of view, the system is fully described by a Helmholtz energy consisting of three explicit contributions: entropic springs, slip springs and non-bonded interactions. Entanglements between subchains in the network are represented by slip springs. The ends of the slip springs undergo thermally activated hops between adjacent beads along the chain backbones, which are tracked by kinetic Monte Carlo simulation. In addition, creation/destruction processes are included for the slip springs at dangling subchain ends. The Helmholtz energy of non-bonded interactions is derived from the Sanchez–Lacombe equation of state. The isothermal compressibility of the polymer network is predicted from equilibrium density fluctuations in very good agreement with the underlying equation of state and with experiment. Moreover, the methodology and the corresponding C++ code are applied to simulate elongational deformations of polymer rubbers. The shear stress relaxation modulus is predicted from equilibrium simulations of several microseconds of physical time in the undeformed state, as well as from stress-strain curves of the crosslinked polymer networks under deformation.


Author(s):  
Jing-hua Guo ◽  
Jin-Xiang Liu ◽  
Hongbo Wang ◽  
Haiying Liu ◽  
Gang Chen

In this work, combining the first-principles calculations with kinetic Monte Carlo (KMC) simulations, we constructed an irregular carbon bridge on the graphene surface and explored the process of H migration...


AIP Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 045306
Author(s):  
Georg Daniel Förster ◽  
Thomas D. Swinburne ◽  
Hua Jiang ◽  
Esko Kauppinen ◽  
Christophe Bichara

Sign in / Sign up

Export Citation Format

Share Document