scholarly journals Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments

2020 ◽  
Vol 118 (2) ◽  
pp. e2007051117
Author(s):  
Eric C. Dunham ◽  
John E. Dore ◽  
Mark L. Skidmore ◽  
Eric E. Roden ◽  
Eric S. Boyd

Life in environments devoid of photosynthesis, such as on early Earth or in contemporary dark subsurface ecosystems, is supported by chemical energy. How, when, and where chemical nutrients released from the geosphere fuel chemosynthetic biospheres is fundamental to understanding the distribution and diversity of life, both today and in the geologic past. Hydrogen (H2) is a potent reductant that can be generated when water interacts with reactive components of mineral surfaces such as silicate radicals and ferrous iron. Such reactive mineral surfaces are continually generated by physical comminution of bedrock by glaciers. Here, we show that dissolved H2 concentrations in meltwaters from an iron and silicate mineral-rich basaltic glacial catchment were an order of magnitude higher than those from a carbonate-dominated catchment. Consistent with higher H2 abundance, sediment microbial communities from the basaltic catchment exhibited significantly shorter lag times and faster rates of net H2 oxidation and dark carbon dioxide (CO2) fixation than those from the carbonate catchment, indicating adaptation to use H2 as a reductant in basaltic catchments. An enrichment culture of basaltic sediments provided with H2, CO2, and ferric iron produced a chemolithoautotrophic population related to Rhodoferax ferrireducens with a metabolism previously thought to be restricted to (hyper)thermophiles and acidophiles. These findings point to the importance of physical and chemical weathering processes in generating nutrients that support chemosynthetic primary production. Furthermore, they show that differences in bedrock mineral composition can influence the supplies of nutrients like H2 and, in turn, the diversity, abundance, and activity of microbial inhabitants.

Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 760
Author(s):  
Melinda Hilton ◽  
Mandana Shaygan ◽  
Neil McIntyre ◽  
Thomas Baumgartl ◽  
Mansour Edraki

Coal mine spoils have the potential to create environmental impacts, such as salt load to surrounding environments, particularly when exposed to weathering processes. This study was conducted to understand the effect of physical and chemical weathering on the magnitude, rate, and dynamics of salt release from different coal mine spoils. Five spoil samples from three mines in Queensland were sieved to three different particle size fractions (<2 mm, 2–6 mm, and >6 mm). Two samples were dispersive spoils, and three samples were nondispersive spoils. The spoils were subjected to seven wet–dry cycles, where the samples were periodically leached with deionised water. The rate, magnitude, and dynamics of solutes released from spoils were spoil specific. One set of spoils did not show any evidence of weathering, but initially had higher accumulation of salts. In contrast, broad oxidative weathering occurred in another set of spoils; this led to acid generation and resulted in physical weathering, promoting adsorption–desorption and dissolution and, thus, a greater release of salts. This study indicated that the rate and magnitude of salt release decreased with increasing particle size. Nevertheless, when the spoil is dispersive, the degree of weathering manages salt release irrespective of initial particle size. This study revealed that the long-term salt release from spoils is not only governed by geochemistry, weathering degree, and particle size but also controlled by the water/rock ratio and hydrological conditions of spoils.


2019 ◽  
Author(s):  
Maria L. Leonard ◽  
◽  
Rachel M. Kelk ◽  
Dori J. Farthing

Hydrobiologia ◽  
1991 ◽  
Vol 209 (2) ◽  
pp. 107-116 ◽  
Author(s):  
Aldo Mariazzi ◽  
Victor Conzonno ◽  
Ricardo Echenique ◽  
Hector Labollita

2006 ◽  
Vol 235 (1-2) ◽  
pp. 76-94 ◽  
Author(s):  
J.P. Bernal ◽  
S.M. Eggins ◽  
M.T. McCulloch ◽  
R. Grün ◽  
R.A. Eggleton

2017 ◽  
Vol 53 ◽  
pp. 269-284
Author(s):  
Martin A. Becker ◽  
Rebecca B. Chamberlain ◽  
Harry M. Maisch ◽  
Alex Bartholomew ◽  
John A. Chamberlain

Glacial erratics belonging to the Rickard Hill facies (RHF) of the Saugerties Member of the Schoharie Formation (upper Emsian: Lower Devonian) occur scattered throughout the Piedmont of northern New Jersey and Lower Hudson Valley of New York. These RHF glacial erratics contain an assemblage of trilobites belonging to: Anchiopella anchiops, Burtonops cristatus, Calymene platys, Terataspis grandis, cf. Trypaulites sp. and cf. Coniproetus sp. This RHF glacial erratic trilobite assemblage consists predominately of disarticulated cephala and pygidia that were originally preserved as part of a localized, third-order eustatic sea level lag deposit in the Helderberg Mountains region of central New York State and subsequently transported in glacially plucked blocks by the Hudson-Champlain Lobe of the Laurentide Ice Sheet southward into New Jersey. Physical and chemical weathering during glacial erosion, transportation and deposition of the RHF glacial erratics has revealed some anatomical features of these trilobites in high detail along with other invertebrates. This unique sequence of weathering reveals additional characteristics that bear upon issues of bathymetric controls on upper Schoharie Formation lithology, trilobite faunal abundance and taphonomy during the upper Emsian (Lower Devonian) of eastern New York State.  


2017 ◽  
Author(s):  
Sang Heon Lee ◽  
Jang Han Lee ◽  
Howon Lee ◽  
Jae Joong Kang ◽  
Jae Hyung Lee ◽  
...  

Abstract. The Laptev and East Siberian seas are the least biologically studied region in the Arctic Ocean, although they are highly dynamic in terms of active processing of organic matter impacting the transport to the deep Arctic Ocean. Field-measured carbon and nitrogen uptake rates of phytoplankton were conducted in the Laptev and East Siberian seas as part of the NABOS (Nansen and Amundsen Basins Observational System) program. Major inorganic nutrients were mostly depleted at 100–50 % light depths but were not depleted within the euphotic depths in the Laptev and East Siberian seas. The water column-integrated chl-a concentration in this study was significantly higher than that in the western Arctic Ocean (t-test, p > 0.01). Unexpectedly, the daily carbon and nitrogen uptake rates in this study (average ± S.D. = 110.3 ± 88.3 mg C m−2 d−1 and 37.0 ± 25.8 mg N m−2 d−1, respectively) are within previously reported ranges. Surprisingly, the annual primary production (13.2 g C m−2) measured in the field during the vegetative season is approximately one order of magnitude lower than the primary production reported from a satellite–based estimation. Further validation using field-measured observations is necessary for a better projection of the ecosystem in the Laptev and East Siberian seas responding to ongoing climate change.


2021 ◽  
Vol 16 (1) ◽  
pp. 199-210
Author(s):  
Máté Karlik ◽  
◽  
Ildikó GYOLLAI ◽  
Anna VANCSIK ◽  
Krisztián FINTOR ◽  
...  

The catchment (bedrock and soil) and sediments of lake Bolătău, Romania were studied by high resolution multi-methodological investigations to characterize paleoenvironmental and formation conditions. Particle size analyses, optical and cathodoluminescence microscopy, FTIR-ATR and Raman spectroscopy, X-ray powder diffraction, and XRF were applied for microtextural, chemical, micro-mineralogical and embedded organic material characterization and distribution of the sediments, especially concerning geochemical conditions, like pH and redox potential change. Our results support physical and chemical weathering in the process of soil formation with appearance of the new minerals appear (10Å sized phyllosilicates and clay minerals). Comparison of these studies offer possible differentiation of syn- and diagenetic mineralization, the clarification of debris contribution, microbial mediation and complex mineralization via decomposition of cell and extracellular polymeric substance. Based on the analyses on the abrasives, a suboxic environment prevailed in the depositional area and considerable microbial contribution is proposed via accumulation of lake sediments.


Author(s):  
Jan Zalasiewicz

The Earth has the greatest abundance and variety of sedimentary strata in our star system, dating back some 3.8 billion years. ‘Sedimentary rocks’ describes the processes that create different types of sedimentary rocks, which form a key guideline in reconstructing Earth’s history. Particles are created by both physical and chemical weathering. These particles are then moved by different modes of transport and sorted by size, which affect the resulting sedimentary rock. Sedimentary layers can remain as soft muds or loose sands for millions of years, but most buried sedimentary layers harden and turn into rock, under the combined effects of increasing heat and pressure, and of changes in chemical environment.


Sign in / Sign up

Export Citation Format

Share Document