scholarly journals Structural basis for p50RhoGAP BCH domain–mediated regulation of Rho inactivation

2021 ◽  
Vol 118 (21) ◽  
pp. e2014242118
Author(s):  
Vishnu Priyanka Reddy Chichili ◽  
Ti Weng Chew ◽  
Srihari Shankar ◽  
Shi Yin Er ◽  
Cheen Fei Chin ◽  
...  

Spatiotemporal regulation of signaling cascades is crucial for various biological pathways, under the control of a range of scaffolding proteins. The BNIP-2 and Cdc42GAP Homology (BCH) domain is a highly conserved module that targets small GTPases and their regulators. Proteins bearing BCH domains are key for driving cell elongation, retraction, membrane protrusion, and other aspects of active morphogenesis during cell migration, myoblast differentiation, and neuritogenesis. We previously showed that the BCH domain of p50RhoGAP (ARHGAP1) sequesters RhoA from inactivation by its adjacent GAP domain; however, the underlying molecular mechanism for RhoA inactivation by p50RhoGAP remains unknown. Here, we report the crystal structure of the BCH domain of p50RhoGAP Schizosaccharomyces pombe and model the human p50RhoGAP BCH domain to understand its regulatory function using in vitro and cell line studies. We show that the BCH domain adopts an intertwined dimeric structure with asymmetric monomers and harbors a unique RhoA-binding loop and a lipid-binding pocket that anchors prenylated RhoA. Interestingly, the β5-strand of the BCH domain is involved in an intermolecular β-sheet, which is crucial for inhibition of the adjacent GAP domain. A destabilizing mutation in the β5-strand triggers the release of the GAP domain from autoinhibition. This renders p50RhoGAP active, thereby leading to RhoA inactivation and increased self-association of p50RhoGAP molecules via their BCH domains. Our results offer key insight into the concerted spatiotemporal regulation of Rho activity by BCH domain–containing proteins.

2009 ◽  
Vol 106 (37) ◽  
pp. 15616-15621 ◽  
Author(s):  
Masataka Umitsu ◽  
Hiroshi Nishimasu ◽  
Akiko Noma ◽  
Tsutomu Suzuki ◽  
Ryuichiro Ishitani ◽  
...  

S-adenosylmethionine (AdoMet) is a methyl donor used by a wide variety of methyltransferases, and it is also used as the source of an α-amino-α-carboxypropyl (“acp”) group by several enzymes. tRNA-yW synthesizing enzyme-2 (TYW2) is involved in the biogenesis of a hypermodified nucleotide, wybutosine (yW), and it catalyzes the transfer of the “acp” group from AdoMet to the C7 position of the imG-14 base, a yW precursor. This modified nucleoside yW is exclusively located at position 37 of eukaryotic tRNAPhe, and it ensures the anticodon-codon pairing on the ribosomal decoding site. Although this “acp” group has a significant role in preventing decoding frame shifts, the mechanism of the “acp” group transfer by TYW2 remains unresolved. Here we report the crystal structures and functional analyses of two archaeal homologs of TYW2 from Pyrococcus horikoshii and Methanococcus jannaschii. The in vitro mass spectrometric and radioisotope-labeling analyses confirmed that these archaeal TYW2 homologues have the same activity as yeast TYW2. The crystal structures verified that the archaeal TYW2 contains a canonical class-I methyltransferase (MTase) fold. However, their AdoMet-bound structures revealed distinctive AdoMet-binding modes, in which the “acp” group, instead of the methyl group, of AdoMet is directed to the substrate binding pocket. Our findings, which were confirmed by extensive mutagenesis studies, explain why TYW2 transfers the “acp” group, and not the methyl group, from AdoMet to the nucleobase.


1993 ◽  
Vol 294 (3) ◽  
pp. 753-760 ◽  
Author(s):  
C A Colville ◽  
M J Seatter ◽  
G W Gould

We have expressed the liver (GLUT 2), brain (GLUT 3) and insulin-responsive (GLUT 4) glucose transporters in oocytes from Xenopus laevis by microinjection of in vitro-transcribed mRNA. Using a range of halogeno- and deoxy-glucose analogues, and other hexoses, we have studied the structural basis of sugar binding to these different isoforms. We show that a hydrogen bond to the C-3 position is involved in sugar binding for all three isoforms, but that the direction of this hydrogen bond is different in GLUT 2 from either GLUT 1, 3 or 4. Hydrogen-bonding at the C-4 position is also involved in sugar recognition by all three isoforms, but we propose that in GLUT 3 this hydrogen bond plays a less significant role than in GLUT 2 and 4. In all transporters we propose that the C-4 position is directed out of the sugar-binding pocket. The role of the C-6 position is also discussed. In addition, we have analysed the ability of fructopyranose and fructofuranose analogues to inhibit the transport mediated by GLUT2. We show that fructofuranose analogues, but not fructopyranose analogues, are efficient inhibitors of transport mediated by GLUT 2, and therefore suggest that GLUT 2 accommodates D-glucose as a pyranose ring, but D-fructose as a furanose ring. Models for the binding sites of GLUT 2, 3 and 4 are presented.


Author(s):  
Tilak Kumar Gupta ◽  
Sven Klumpe ◽  
Karin Gries ◽  
Steffen Heinz ◽  
Wojciech Wietrzynski ◽  
...  

AbstractVesicle-inducing protein in plastids (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-shaping function. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket that is required for VIPP1 oligomerization. Inside the ring’s lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo point mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Our study provides a structural basis for understanding how the oligomerization of VIPP1 drives the biogenesis of thylakoid membranes and protects these life-giving membranes from environmental stress.


2020 ◽  
Vol 295 (10) ◽  
pp. 3257-3268 ◽  
Author(s):  
Yasunori Watanabe ◽  
Yasushi Tamura ◽  
Chika Kakuta ◽  
Seiya Watanabe ◽  
Toshiya Endo

Eukaryotic cells are compartmentalized to form organelles, whose functions rely on proper phospholipid and protein transport. Here we determined the crystal structure of human VAT-1, a cytosolic soluble protein that was suggested to transfer phosphatidylserine, at 2.2 Å resolution. We found that VAT-1 transferred not only phosphatidylserine but also other acidic phospholipids between membranes in vitro. Structure-based mutational analyses showed the presence of a possible lipid-binding cavity at the interface between the two subdomains, and two tyrosine residues in the flexible loops facilitated phospholipid transfer, likely by functioning as a gate to this lipid-binding cavity. We also found that a basic and hydrophobic loop with two tryptophan residues protruded from the molecule and facilitated binding to the acidic-lipid membranes, thereby achieving efficient phospholipid transfer.


1989 ◽  
Vol 9 (9) ◽  
pp. 3904-3910 ◽  
Author(s):  
I Rey ◽  
P Soubigou ◽  
L Debussche ◽  
C David ◽  
A Morgat ◽  
...  

Residues 32 to 40, which are conserved among ras proteins from different species, are likely to participate in interactions with the p21 effector system. With the goal of understanding the structural basis of the regulatory functions of c-Ha-ras p21, we produced rabbit antisera against a synthetic peptide corresponding to amino acids 33 to 42 of the protein. The affinity-purified antibodies interacted specifically with p21 and with the antigenic peptide. The epitope recognized by the antibodies appeared to be centered on threonine 35. The antibodies inhibited both in vitro p21-induced production of cyclic AMP in detergent extracts of RAS-defective yeast membranes and GAP-stimulated GTPase activity. However, monoclonal anti-ras antibodies Y13-259 and Y13-238 were not capable of specifically inhibiting interactions of p21 with these two putative effector proteins. The apparent inhibitory effect of Y13-259 on stimulation of p21 by GAP was due to a greatly reduced rate of exchange of nucleotides in the binding pocket of the protein. These findings provide additional support for the essential role of the residue 32 to 40 domain as the true effector site and further evidence of the involvement of GAP as a cellular effector of ras proteins.


2014 ◽  
Vol 70 (2) ◽  
pp. 242-252 ◽  
Author(s):  
Sonia Fieulaine ◽  
Michel Desmadril ◽  
Thierry Meinnel ◽  
Carmela Giglione

Peptide deformylases (PDFs), which are essential and ubiquitous enzymes involved in the removal of theN-formyl group from nascent chains, are classified into four subtypes based on the structural and sequence similarity of specific conserved domains. All PDFs share a similar three-dimensional structure, are functionally interchangeablein vivoand display similar propertiesin vitro, indicating that their molecular mechanism has been conserved during evolution. The human mitochondrial PDF is the only exception as despite its conserved fold it reveals a unique substrate-binding pocket together with an unusual kinetic behaviour. Unlike human PDF, the closely related mitochondrial PDF1As from plants have catalytic efficiencies and enzymatic parameters that are similar to those of other classes of PDFs. Here, the aim was to identify the structural basis underlying the properties of human PDF compared with all other PDFs by focusing on plant mitochondrial PDF1A. The construction of a chimaera composed of plant PDF1A with the nonrandom substitutions found in a conserved motif of its human homologue converted it into an enzyme with properties similar to the human enzyme, indicating the crucial role of these positions. The crystal structure of this human-like plant PDF revealed that substitution of two residues leads to a reduction in the volume of the ligand-binding site together with the introduction of negative charges, unravelling the origin of the weak affinity of human PDF for its substrate. In addition, the substitution of the two residues of human PDF modifies the transition state of the reaction through alteration of the network of interactions between the catalytic residues and the substrate, leading to an overall reduced reaction rate.


1986 ◽  
Vol 238 (3) ◽  
pp. 879-884 ◽  
Author(s):  
B Lidström-Olsson ◽  
K Wikvall

The ability of different lipid-binding proteins in liver cytosol to affect enzyme activities in bile-acid biosynthesis was studied in whole microsomes (microsomal fractions) and mitochondria and in purified enzyme systems. Sterol carrier protein2 stimulated the 7 alpha-hydroxylation of cholesterol and the 12 alpha-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha-diol in microsomes and the 26-hydroxylation of cholesterol in mitochondria 2-3-fold. It also stimulated the oxidation of 5-cholestene-3 beta, 7 alpha-diol into 7 alpha-hydroxy-4-cholesten-3-one in microsomes. The stimulatory effect of sterol carrier protein2 was much less with purified cholesterol 7 alpha- and 26-hydroxylase systems than with microsomes and mitochondria. No stimulatory effect of sterol carrier protein2 was observed with purified 12 alpha-hydroxylase and 3 beta-hydroxy-delta 5-C27-steroid oxidoreductase. Sterol carrier protein (fatty-acid-binding protein), ‘DEAE-peak I protein’ [Dempsey, McCoy, Baker, Dimitriadou-Vafiadou, Lorsbach & Howards (1981) J. Biol. Chem. 256, 1867-1873], ligandin (glutathione transferase B) and serum albumin had no marked stimulatory effects in either crude or in purified systems. The results suggest that sterol carrier protein2 facilitates the introduction of the less-polar substrates in bile-acid biosynthesis to the membrane-bound enzymes in crude systems in vitro. The broad substrate specificity appears, however, not to be consistent with a specific regulatory function for sterol carrier protein2 in bile-acid biosynthesis.


2018 ◽  
Vol 293 (47) ◽  
pp. 18110-18122 ◽  
Author(s):  
Song Yee Jang ◽  
Jungwon Hwang ◽  
Byoung Sik Kim ◽  
Eun-Young Lee ◽  
Byung-Ha Oh ◽  
...  

Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are secreted by Gram-negative bacteria and function as primary virulence-promoting macromolecules that deliver multiple cytopathic and cytotoxic effector domains into the host cytoplasm. Among these effectors, Ras/Rap1-specific endopeptidase (RRSP) catalyzes the sequence-specific cleavage of the Switch I region of the cellular substrates Ras and Rap1 that are crucial for host innate immune defenses during infection. To dissect the molecular basis underpinning RRSP-mediated substrate inactivation, we determined the crystal structure of an RRSP from the sepsis-causing bacterial pathogen Vibrio vulnificus (VvRRSP). Structural and biochemical analyses revealed that VvRRSP is a metal-independent TIKI family endopeptidase composed of an N-terminal membrane-localization and substrate-recruitment domain (N lobe) connected via an inter-lobe linker to the C-terminal active site–coordinating core β-sheet–containing domain (C lobe). Structure-based mutagenesis identified the 2His/2Glu catalytic residues in the core catalytic domain that are shared with other TIKI family enzymes and that are essential for Ras processing. In vitro KRas cleavage assays disclosed that deleting the N lobe in VvRRSP causes complete loss of enzymatic activity. Endogenous Ras cleavage assays combined with confocal microscopy analysis of HEK293T cells indicated that the N lobe functions both in membrane localization via the first α-helix and in substrate assimilation by altering the functional conformation of the C lobe to facilitate recruitment of cellular substrates. Collectively, these results indicate that RRSP is a critical virulence factor that robustly inactivates Ras and Rap1 and augments the pathogenicity of invading bacteria via the combined effects of its N and C lobes.


2021 ◽  
Author(s):  
Sigurbjorn Markusson ◽  
Erik I Hallin ◽  
Helene J Bustad ◽  
Arne Raasakka ◽  
Ju Xu ◽  
...  

Activity-regulated cytoskeleton-associated protein (Arc) is a multidomain protein of retroviral origin with a vital role in the regulation of synaptic plasticity and memory formation in mammals. However, the mechanistic and structural basis of Arc function is little understood. Arc has an NTD involved in membrane binding and a CTD which binds postsynaptic protein ligands. In addition, the NTD and CTD both function in Arc oligomerization, including assembly of retrovirus-like capsid involved in intercellular signaling. We produced and characterised six ultra-high-affinity anti-Arc nanobodies (Nb). The CTD of both rat and human Arc could be crystallised in ternary complexes with two Nbs simultaneously bound (H11 and C11). H11 binding deep into the stargazing-binding pocket of Arc CTD suggested competitive binding with Arc ligand peptides, which was confirmed in vitro. This indicates that the H11 Nb could serve as a genetically-encoded tool for inhibition of endogenous Arc N-lobe interactions in study of neuronal function and plasticity. The crystallisation of the human Arc CTD in two different conformations, accompanied by SAXS data and molecular dynamics simulations, paints a dynamic picture of the mammalian Arc CTD. Dynamics were affected by mutations known to inhibit capsid formation, implying a role for Arc CTD dynamics in oligomerisation. Dimerisation of the NTD, together with structural dynamics of the CTD, suggest a mechanism, by which structural dynamics of the CTD may promote capsomer formation, and dimerisation of the NTD links capsomers, facilitating the formation of capsids. The described recombinant ultrahigh-affinity anti-Arc Nbs are versatile tools that can be further developed for studying mammalian Arc structure and function in vitro and in vivo.


2022 ◽  
Author(s):  
Zhaotong Cong ◽  
Qingtong Zhou ◽  
Yang Li ◽  
Li-Nan Chen ◽  
Zi-Chen Zhang ◽  
...  

Glucagon-like peptide-1 receptor (GLP-1R) agonists are effective in treating type 2 diabetes and obesity with proven cardiovascular benefits. However, most of them are peptides and require subcutaneous injection except for orally available semaglutide. Boc5 was identified as the first orthosteric non-peptidic agonist of GLP-1R that mimics a broad spectrum of bioactivities of GLP-1 in vitro and in vivo. Here, we report the cryo-electron microscopy structures of Boc5 and its analog WB4-24 in complex with the human GLP-1R and Gs protein. Bound to the extracellular domain, extracellular loop 2, and transmembrane (TM) helices 1, 2, 3 and 7, one arm of both compounds inserted deeply into the bottom of the orthosteric binding pocket that is usually accessible by peptidic agonists, thereby partially overlapping with the residues A8-D15 in GLP-1. The other three arms, meanwhile, extended to the TM1-TM7, TM1-TM2, and TM2-TM3 clefts showing an interaction feature substantially similar to a previously known small molecule agonist LY3502970. Such a unique binding mode creates a distinct conformation that confers both peptidomimetic agonism and biased signaling induced by non-peptidic modulators at GLP-1R. Further, the conformational difference between Boc5 and WB4-24, two closed related compounds, provides a structural framework for fine tuning of pharmacological efficacy in the development of future small molecule therapeutics targeting GLP-1R.


Sign in / Sign up

Export Citation Format

Share Document