scholarly journals Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production

2021 ◽  
Vol 118 (28) ◽  
pp. e2022666118
Author(s):  
Daniel L. Northrup ◽  
Bruno Basso ◽  
Michael Q. Wang ◽  
Cristine L. S. Morgan ◽  
Philip N. Benfey

Plants remove carbon dioxide from the atmosphere through photosynthesis. Because agriculture’s productivity is based on this process, a combination of technologies to reduce emissions and enhance soil carbon storage can allow this sector to achieve net negative emissions while maintaining high productivity. Unfortunately, current row-crop agricultural practice generates about 5% of greenhouse gas emissions in the United States and European Union. To reduce these emissions, significant effort has been focused on changing farm management practices to maximize soil carbon. In contrast, the potential to reduce emissions has largely been neglected. Through a combination of innovations in digital agriculture, crop and microbial genetics, and electrification, we estimate that a 71% (1,744 kg CO2e/ha) reduction in greenhouse gas emissions from row crop agriculture is possible within the next 15 y. Importantly, emission reduction can lower the barrier to broad adoption by proceeding through multiple stages with meaningful improvements that gradually facilitate the transition to net negative practices. Emerging voluntary and regulatory ecosystems services markets will incentivize progress along this transition pathway and guide public and private investments toward technology development. In the difficult quest for net negative emissions, all tools, including emission reduction and soil carbon storage, must be developed to allow agriculture to maintain its critical societal function of provisioning society while, at the same time, generating environmental benefits.

2019 ◽  
Vol 25 (4) ◽  
pp. 559-577 ◽  
Author(s):  
Gustavo V. Popin ◽  
Arthur K. B. Santos ◽  
Thiago de P. Oliveira ◽  
Plínio B. de Camargo ◽  
Carlos E. P. Cerri ◽  
...  

2013 ◽  
Vol 67 (6) ◽  
pp. 1370-1379 ◽  
Author(s):  
J. Liebetrau ◽  
T. Reinelt ◽  
J. Clemens ◽  
C. Hafermann ◽  
J. Friehe ◽  
...  

With the increasing number of biogas plants in Germany the necessity for an exact determination of the actual effect on the greenhouse gas emissions related to the energy production gains importance. Hitherto the life cycle assessments have been based on estimations of emissions of biogas plants. The lack of actual emission evaluations has been addressed within a project from which the selected results are presented here. The data presented here have been obtained during a survey in which 10 biogas plants were analysed within two measurement periods each. As the major methane emission sources the open storage of digestates ranging from 0.22 to 11.2% of the methane utilized and the exhaust of the co-generation units ranging from 0.40 to 3.28% have been identified. Relevant ammonia emissions have been detected from the open digestate storage. The main source of nitrous oxide emissions was the co-generation unit. Regarding the potential of measures to reduce emissions it is highly recommended to focus on the digestate storage and the exhaust of the co-generation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Conner J. McCollum ◽  
Steven M. Ramsey ◽  
Jason S. Bergtold ◽  
Graciela Andrango

Abstract Background Continued progress towards reducing greenhouse gas emissions will require efforts across many industries. Though aviation is estimated to account for modest portions of global greenhouse gas emissions, these shares may grow as the industry expands. The use of biomass- and crop-based sustainable aviation fuels can help reduce emissions in the industry. However, limited feedstock supplies are a barrier to increased use of these fuels. This study examines the potential supply of feedstock from oilseeds and farmer willingness to produce oilseed crops under contract for sustainable aviation fuel production with a focus on canola and similar oilseed feedstocks (e.g., rapeseed). Stated-choice survey data is used to examine the contract and crop features that drive contract acceptance in six states located in the U.S. Great Plains and Pacific Northwest and then acreage supply curves are estimated for canola using secondary data. Main findings The estimated number of acres supplied under contract varies considerably across states and scenarios. Relatedly, estimated supply curves exhibit high degrees of price responsiveness. Of the states analyzed, oilseed acreages supplied under contract are generally found to be greatest in Kansas and North Dakota. Conclusions Results suggest that in the absence of favorable contract and crop scenarios canola and other oilseed prices will need to considerably increase from typical levels to induce higher levels of supplied acres. The presence of crop insurance, shorter contract lengths that provide cost sharing and the availability of particular crop attributes are shown to diminish the need for higher canola and other oilseed prices.


2021 ◽  
pp. 1-10
Author(s):  
Eelco J. Rohling

This chapter outlines the challenge facing us. The Paris Agreement sets a target maximum of 2°C global warming and a preferred limit of 1.5°C. Yet, the subsequent combined national pledges for emission reduction suffice only for limiting warming to roughly 3°C. And because most nations are falling considerably short of meeting their pledges, even greater warming may become locked in. Something more drastic and wide-ranging is needed: a multi-pronged strategy. These different prongs to the climate-change solution are introduced in this chapter and explored one by one in the following chapters. First is rapid, massive reduction of greenhouse gas emissions. Second is implementation of ways to remove greenhouse gases from the atmosphere. Third may be increasing the reflectivity of Earth to incoming sunlight, to cool certain places down more rapidly. In addition, we need to protect ourselves from climate-change impacts that have already become inevitable.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e72019 ◽  
Author(s):  
Benjamin D. Duval ◽  
Kristina J. Anderson-Teixeira ◽  
Sarah C. Davis ◽  
Cindy Keogh ◽  
Stephen P. Long ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 337 ◽  
Author(s):  
John Freebairn

Arguments for a portfolio of price, regulation and subsidy policy interventions to reduce the production and consumption of greenhouse gas emissions are presented. The operation and effects of each intervention are described and compared. A combination of different sets of market failures across the many potential decision changes available to producers and consumers to reduce emissions and different properties of the mitigation instruments support a portfolio approach to reduce emissions at a low cost.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 470
Author(s):  
Chiao-Wen Lin ◽  
Yu-Chen Kao ◽  
Meng-Chun Chou ◽  
Hsin-Hsun Wu ◽  
Chuan-Wen Ho ◽  
...  

Mangroves are one of the blue carbon ecosystems. However, greenhouse gas emissions from mangrove soils may reduce the capacity of carbon storage in these systems. In this study, methane (CH4) fluxes and soil properties of the top 10 cm layer were determined in subtropical (Kandelia obovata) and tropical (Avicennia marina) mangrove ecosystems of Taiwan for a complete seasonal cycle. Our results demonstrate that CH4 emissions in mangroves cannot be neglected when constructing the carbon budgets and estimating the carbon storage capacity. CH4 fluxes were significantly higher in summer than in winter in the Avicennia mangroves. However, no seasonal variation in CH4 flux was observed in the Kandelia mangroves. CH4 fluxes were significantly higher in the mangrove soils of Avicennia than in the adjoining mudflats; this trend, however, was not necessarily recapitulated at Kandelia. The results of multiple regression analyses show that soil water and organic matter content were the main factors regulating the CH4 fluxes in the Kandelia mangroves. However, none of the soil parameters assessed show a significant influence on the CH4 fluxes in the Avicennia mangroves. Since pneumatophores can transport CH4 from anaerobic deep soils, this study suggests that the pneumatophores of Avicennia marina played a more important role than soil properties in affecting soil CH4 fluxes. Our results show that different mangrove tree species and related root structures may affect greenhouse gas emissions from the soils.


Sign in / Sign up

Export Citation Format

Share Document