scholarly journals The diversity of stomatal development regulation in Callitriche is related to the intrageneric diversity in lifestyles

2021 ◽  
Vol 118 (14) ◽  
pp. e2026351118
Author(s):  
Yuki Doll ◽  
Hiroyuki Koga ◽  
Hirokazu Tsukaya

Stomata, the gas exchange structures of plants, are formed by the division and differentiation of stem cells, or meristemoids. Although diverse patterns of meristemoid behavior have been observed among different lineages of land plants, the ecological significance and diversification processes of these different patterns are not well understood. Here we describe an intrageneric diversity in the patterns of meristemoid division within the ecologically diverse genus Callitriche (Plantaginaceae). Meristemoids underwent a series of divisions before differentiating into stomata in the terrestrial species of Callitriche, but these divisions did not occur in amphibious species, which can grow in both air and water, in which meristemoids differentiated directly into stomata. These findings imply the adaptive significance of diversity in meristemoid division. Molecular genetic analyses showed that the different expression times of the stomatal key transcription factors SPEECHLESS and MUTE, which maintain and terminate the meristemoid division, respectively, underlie the different division patterns of meristemoids. Unlike terrestrial species, amphibious species prematurely expressed MUTE immediately after expressing SPEECHLESS, which corresponded to their early termination of stomatal division. By linking morphological, ecological, and genetic elements of stomatal development, this study provides significant insight that should aid ecological evolutionary developmental biology investigations of stomata.

Author(s):  
Alan C. Love

Many researchers have argued that evolutionary developmental biology (evo-devo) constitutes a challenge to standard evolutionary theory, requiring the explicit inclusion of developmental processes that generate variation and attention to organismal form (rather than adaptive function). An analysis of these developmental-form challenges indicates that the primary concern is not the inclusion of specific content but the epistemic organization or structure of evolutionary theory. Proponents of developmental-form challenges favor moving their considerations to a more central location in evolutionary theorizing, in part because of a commitment to the value of mechanistic explanation. This chapter argues there are multiple legitimate structures for evolutionary theory, instead of a single, overarching or canonical organization, and different theory presentations can be understood as idealizations that serve different investigative and explanatory goals in evolutionary inquiry.


2021 ◽  
Author(s):  
Keiko U Torii

Abstract Background Stomata are adjustable pores on the surface of plant shoots for efficient gas exchange and water control. The presence of stomata is essential for plant growth and survival, and the evolution of stomata is considered as a key developmental innovation of the land plants, allowing colonization on land from aquatic environments some 450 million years ago. In the past two decades, molecular genetic studies using the model plant Arabidopsis thaliana identified key genes and signalling modules that regulate stomatal development: master-regulatory transcription factors that orchestrate cell-state transitions and peptide-receptor signal transduction pathways, which, together, enforce proper patterning of stomata within the epidermis. Studies in diverse plant species, ranging from bryophytes to angiosperm grasses, have begun to unravel the conservation and uniqueness of the core modules in stomatal development. Scope Here, I review the mechanisms of stomatal development in the context of epidermal tissue patterning. First, I introduce the core regulatory mechanisms of stomatal patterning and differentiation in the model species Arabidopsis thaliana. Subsequently, experimental evidence is presented supporting the idea that different cell types within the leaf epidermis, namely stomata, hydathodes pores, pavement cells, and trichomes, either share developmental origins or mutually influence each other’s gene regulatory circuits during development. Emphasis is taken on extrinsic and intrinsic signals regulating the balance between stomata and pavement cells, specifically by controlling the fate of Stomatal-Lineage Ground Cells (SLGCs) to remain within the stomatal-cell lineage or differentiate into pavement cells. Finally, I discuss the influence of inter-tissue-layer communication between the epidermis and underlying mesophyll/vascular tissues on stomatal differentiation. Understanding the dynamic behaviors of stomatal precursor cells and their differentiation in the broader context of tissue and organ development may help design plants tailored for optimal growth and productivity in specific agricultural applications and a changing environment.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Angelica Miglioli ◽  
Laura Canesi ◽  
Isa D. L. Gomes ◽  
Michael Schubert ◽  
Rémi Dumollard

Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of the resulting data in a phylogenetic context allowed significant progress toward an understanding of NR superfamily evolution, both in terms of molecular activities and developmental functions. In this context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand interactions, further strengthening the importance of these organisms in the field of evolutionary developmental biology.


2021 ◽  
Author(s):  
Jerzy Dzik

An instructive introduction to the theory of evolution and its applications in biology, physics, chemistry, geology and humanities. The author shows that evolution is a physical process, occurring in geological time dimension, describes how the Darwin’s theory of natural selection works in immunology, neurobiology, sociology as well as in certain aspects of culture and political institutions. He also shows the effects achieved through the action of selection in different areas of biological and social life. He discusses such problems as: the ambiguity of the term “theory of evolution”, the falsifiability of evolutionary hypotheses, connection between evolution and thermodynamics, the concept of reductionism, methodological background of phylogenetics, cladistics, evolutionary developmental biology and homeotic genes, as well as the cumulative nature of social and cultural evolution.


Sign in / Sign up

Export Citation Format

Share Document