scholarly journals Cone photoreceptor dysfunction in retinitis pigmentosa revealed by optoretinography

2021 ◽  
Vol 118 (47) ◽  
pp. e2107444118
Author(s):  
Ayoub Lassoued ◽  
Furu Zhang ◽  
Kazuhiro Kurokawa ◽  
Yan Liu ◽  
Marcel T. Bernucci ◽  
...  

Retinitis pigmentosa (RP) is the most common group of inherited retinal degenerative diseases, whose most debilitating phase is cone photoreceptor death. Perimetric and electroretinographic methods are the gold standards for diagnosing and monitoring RP and assessing cone function. However, these methods lack the spatial resolution and sensitivity to assess disease progression at the level of individual photoreceptor cells, where the disease originates and whose degradation causes vision loss. High-resolution retinal imaging methods permit visualization of human cone cells in vivo but have only recently achieved sufficient sensitivity to observe their function as manifested in the cone optoretinogram. By imaging with phase-sensitive adaptive optics optical coherence tomography, we identify a biomarker in the cone optoretinogram that characterizes individual cone dysfunction by stimulating cone cells with flashes of light and measuring nanometer-scale changes in their outer segments. We find that cone optoretinographic responses decrease with increasing RP severity and that even in areas where cone density appears normal, cones can respond differently than those in controls. Unexpectedly, in the most severely diseased patches examined, we find isolated cones that respond normally. Short-wavelength–sensitive cones are found to be more vulnerable to RP than medium- and long-wavelength–sensitive cones. We find that decreases in cone response and cone outer-segment length arise earlier in RP than changes in cone density but that decreases in response and length are not necessarily correlated within single cones.

2020 ◽  
Author(s):  
Heike Kroeger ◽  
Julia M. D. Grandjean ◽  
Wei-Chieh Jerry Chiang ◽  
Daphne Bindels ◽  
Rebecca Mastey ◽  
...  

AbstractDysregulation of the endoplasmic reticulum (ER) Unfolded Protein Response (UPR) is implicated in the pathology of many human diseases associated with ER stress. Inactivating genetic variants in the UPR regulator Activating Transcription Factor 6 (ATF6) cause severe congenital heritable vision loss in patients by an unknown pathomechanism. To investigate this, we generated retinal organoids from patient iPSCs carrying ATF6 disease-causing variants and ATF6 null hESCs generated by CRISPR. Interestingly, we found that cone photoreceptor cells in ATF6 mutant retinal organoids lacked inner and outer segments concomitant with absence of cone phototransduction gene expression; while rod photoreceptors developed normally. Adaptive optics retinal imaging of patients with disease-causing variants in ATF6 also showed absence of cone inner/outer segment structures but preserved rod structures, mirroring the phenotypes observed in our retinal organoids. These results reveal that ATF6 is essential for the formation of human cone photoreceptors, and associated absence of cone phototransduction components explains the severe visual impairment in patients with ATF6 -associated retinopathy. Moreover, we show that a selective small molecule ATF6 activator compound restores the transcriptional activity of ATF6 disease-causing variants and stimulates the growth of cone photoreceptors in patient retinal organoids, demonstrating that pharmacologic targeting of ATF6 signaling is a therapeutic strategy that needs to be further explored for blinding retinal diseases.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Yiyi Wang ◽  
Nicolas Bensaid ◽  
Pavan Tiruveedhula ◽  
Jianqiang Ma ◽  
Sowmya Ravikumar ◽  
...  

We provide the first measures of foveal cone density as a function of axial length in living eyes and discuss the physical and visual implications of our findings. We used a new generation Adaptive Optics Scanning Laser Ophthalmoscope to image cones at and near the fovea in 28 eyes of 16 subjects. Cone density and other metrics were computed in units of visual angle and linear retinal units. The foveal cone mosaic in longer eyes is expanded at the fovea, but not in proportion to eye length. Despite retinal stretching (decrease in cones/mm2), myopes generally have a higher angular sampling density (increase in cones/deg2) in and around the fovea compared to emmetropes, offering the potential for better visual acuity. Reports of deficits in best-corrected foveal vision in myopes compared to emmetropes cannot be explained by increased spacing between photoreceptors caused by retinal stretching during myopic progression.


2021 ◽  
Vol 14 ◽  
Author(s):  
Una Greferath ◽  
Mario Huynh ◽  
Andrew Ian Jobling ◽  
Kirstan Anne Vessey ◽  
Gene Venables ◽  
...  

Retinitis pigmentosa is a family of inherited retinal degenerations associated with gradual loss of photoreceptors, that ultimately leads to irreversible vision loss. The Royal College of Surgeon's (RCS) rat carries a recessive mutation affecting mer proto-oncogene tyrosine kinase (merTK), that models autosomal recessive disease. The aim of this study was to understand the glial, microglial, and photoreceptor changes that occur in different retinal locations with advancing disease. Pigmented RCS rats (RCS-p+/LAV) and age-matched isogenic control rdy (RCS-rdy +p+/LAV) rats aged postnatal day 18 to 6 months were evaluated for in vivo retinal structure and function using optical coherence tomography and electroretinography. Retinal tissues were assessed using high resolution immunohistochemistry to evaluate changes in photoreceptors, glia and microglia in the dorsal, and ventral retina. Photoreceptor dysfunction and death occurred from 1 month of age. There was a striking difference in loss of photoreceptors between the dorsal and ventral retina, with a greater number of photoreceptors surviving in the dorsal retina, despite being adjacent a layer of photoreceptor debris within the subretinal space. Loss of photoreceptors in the ventral retina was associated with fragmentation of the outer limiting membrane, extension of glial processes into the subretinal space that was accompanied by possible adhesion and migration of mononuclear phagocytes in the subretinal space. Overall, these findings highlight that breakdown of the outer limiting membrane could play an important role in exacerbating photoreceptor loss in the ventral retina. Our results also highlight the value of using the RCS rat to model sectorial retinitis pigmentosa, a disease known to predominantly effect the inferior retina.


2020 ◽  
Author(s):  
Moreno Menghini ◽  
Jasleen K. Jolly ◽  
Anika Nanda ◽  
Laura Wood ◽  
Jasmina Cehajic-Kapetanovic ◽  
...  

2000 ◽  
Vol 276 (15) ◽  
pp. 12091-12099 ◽  
Author(s):  
Dong-Hyun Hong ◽  
Guohua Yue ◽  
Michael Adamian ◽  
Tiansen Li

Retinitis pigmentosa (RP) is a blinding retinal disease in which the photoreceptor cells degenerate. Mutations in the gene for retinitis pigmentosa GTPase regulator (RPGR) are a frequent cause of RP. The function of RPGR is not well understood, but it is thought to be a putative guanine nucleotide exchange factor for an unknown G protein. Ablation of theRPGRgene in mice suggested a role in maintaining the polarized distribution of opsin across the cilia. To investigate its function, we used a protein interaction screen to identify candidate proteins that may interact physiologically with RPGR. One such protein, designated RPGR-interacting protein (RPGRIP), is expressed specifically in rod and cone photoreceptors. It consists of an N-terminal region predicted to form coiled coil structures linked to a C-terminal tail that binds RPGR.In vivo, both proteins co-localize in the photoreceptor connecting cilia. RPGRIP is stably associated with the ciliary axoneme independent of RPGR and is resistant to extraction under conditions that partially solubilized other cytoskeletal components. When over-expressed in heterologous cell lines, RPGRIP appears in insoluble punctate and filamentous structures. These data suggest that RPGRIP is a structural component of the ciliary axoneme, and one of its functions is to anchor RPGR within the cilium. RPGRIP is the only protein known to localize specifically in the photoreceptor connecting cilium. As such, it is a candidate gene for human photoreceptor disease. The tissue-specific expression of RPGRIP explains why mutations in the ubiquitously expressed RPGR confer a photoreceptor-specific phenotype.


Author(s):  
Timo W. F. Mulders ◽  
B. Jeroen Klevering ◽  
Carel B. Hoyng ◽  
Thomas Theelen

Abstract Purpose To evaluate reliability and repeatability of computer-assisted measurements of cone photoreceptor metrics on Heidelberg Engineering Spectralis™ High Magnification Module (HMM™) Automatic Real-time Tracking (ART™) images. Methods We analyzed HMM™ images in three separate study arms. Computer-assisted cone identification software was validated using an open-access adaptive optics (AO) dataset. We compared results of the first arm to data from AO and histology. We evaluated intersession repeatability of our computer-assisted cone analysis in the second arm. We assessed the capability of HMM™ to visualize cones in the presence of pathology in the third arm. Results We included 10 healthy subjects in the first arm of our study, 5 additional healthy participants in the second arm and 5 patients in the third arm. In total, we analyzed 225 regions of interest on HMM™ images. We were able to automatically identify cone photoreceptors and assess corresponding metrics at all eccentricities between 2 and 9° from the fovea. Cone density significantly declined with increasing eccentricity (p = 4.890E-26, Friedman test). With increasing eccentricity, we found a significant increase in intercell distance (p = 2.196E-25, Friedman test) and nearest neighbor distance (p = 1.997E-25, Friedman test). Cone hexagonality ranged between 71 and 85%. We found excellent automated intersession repeatability of cone density counts and spacing measurements. In pathology, we were also able to repeatedly visualize photoreceptors. Conclusion Computer-assisted cone photoreceptor analysis on Spectralis™ HMM™ images is feasible, and most cone metrics show excellent repeatability. HMM™ imaging may be useful for photoreceptor analysis as progression marker in outer retinal disease.


Author(s):  
Yiwei Chen ◽  
Yi He ◽  
Jing Wang ◽  
Wanyue Li ◽  
Lina Xing ◽  
...  

Cone photoreceptor cell identification is important for the early diagnosis of retinopathy. In this study, an object detection algorithm is used for cone cell identification in confocal adaptive optics scanning laser ophthalmoscope (AOSLO) images. An effectiveness evaluation of identification using the proposed method reveals precision, recall, and [Formula: see text]-score of 95.8%, 96.5%, and 96.1%, respectively, considering manual identification as the ground truth. Various object detection and identification results from images with different cone photoreceptor cell distributions further demonstrate the performance of the proposed method. Overall, the proposed method can accurately identify cone photoreceptor cells on confocal adaptive optics scanning laser ophthalmoscope images, being comparable to manual identification.


Sign in / Sign up

Export Citation Format

Share Document