scholarly journals Photosynthetic reaction center variants made via genetic code expansion show Tyr at M210 tunes the initial electron transfer mechanism

2021 ◽  
Vol 118 (51) ◽  
pp. e2116439118
Author(s):  
Jared Bryce Weaver ◽  
Chi-Yun Lin ◽  
Kaitlyn M. Faries ◽  
Irimpan I. Mathews ◽  
Silvia Russi ◽  
...  

Photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides were engineered to vary the electronic properties of a key tyrosine (M210) close to an essential electron transfer component via its replacement with site-specific, genetically encoded noncanonical amino acid tyrosine analogs. High fidelity of noncanonical amino acid incorporation was verified with mass spectrometry and X-ray crystallography and demonstrated that RC variants exhibit no significant structural alterations relative to wild type (WT). Ultrafast transient absorption spectroscopy indicates the excited primary electron donor, P*, decays via a ∼4-ps and a ∼20-ps population to produce the charge-separated state P+HA− in all variants. Global analysis indicates that in the ∼4-ps population, P+HA− forms through a two-step process, P*→ P+BA−→ P+HA−, while in the ∼20-ps population, it forms via a one-step P* → P+HA− superexchange mechanism. The percentage of the P* population that decays via the superexchange route varies from ∼25 to ∼45% among variants, while in WT, this percentage is ∼15%. Increases in the P* population that decays via superexchange correlate with increases in the free energy of the P+BA− intermediate caused by a given M210 tyrosine analog. This was experimentally estimated through resonance Stark spectroscopy, redox titrations, and near-infrared absorption measurements. As the most energetically perturbative variant, 3-nitrotyrosine at M210 creates an ∼110-meV increase in the free energy of P+BA− along with a dramatic diminution of the 1,030-nm transient absorption band indicative of P+BA– formation. Collectively, this work indicates the tyrosine at M210 tunes the mechanism of primary electron transfer in the RC.

2021 ◽  
Author(s):  
Jared Weaver ◽  
Chi-Yun Lin ◽  
Kaitlyn M. Faries ◽  
Irimpan Mathews ◽  
Silvia Russi ◽  
...  

Photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides were engineered to vary the electronic properties of a key tyrosine close to an essential electron transfer component (M210) via its replacement with site-specific genetically encoded noncanonical amino acid tyrosine analogs. High fidelity of noncanonical amino acid incorporation was verified with mass spectrometry and x-ray crystallography and demonstrated that RC variants exhibit no significant structural alterations relative to wild-type. Ultrafast transient absorption spectroscopy indicates the excited primary electron donor, P*, decays via an approximately 4 ps and 20 ps population to produce the charge-separated state P+HA- in all variants. Global analysis indicates that in the 4 ps population P+HA- forms through a 2-step process P* –> P+BA– –> P+HA-, while in the 20 ps population it forms via a 1-step P* –> P+HA– superexchange mechanism. The percentage of P* population that decays via the superexchange route varies from approximately 25% to 45% among variants while in wild-type this percentage is approximately 15%. Increases in the P* population which decays via superexchange correlates with increases in free energy of the P+BA– intermediate caused by a given M210 tyrosine analog. This was experimentally estimated through resonance Stark spectroscopy, redox titrations, and near-infrared absorption measurements. As the most energetically perturbative variant, 3-nitrotyrosine at M210 creates an approximately 110 meV increase in the free energy of P+BA– along with a dramatic diminution of the 1030 nm transient absorption band indicative of P+BA– formation. Collectively this work indicates the tyrosine at M210 tunes the mechanism of primary electron transfer in the RC.<br>


2021 ◽  
Author(s):  
Jared Weaver ◽  
Chi-Yun Lin ◽  
Kaitlyn M. Faries ◽  
Irimpan Mathews ◽  
Silvia Russi ◽  
...  

Photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides were engineered to vary the electronic properties of a key tyrosine close to an essential electron transfer component (M210) via its replacement with site-specific genetically encoded noncanonical amino acid tyrosine analogs. High fidelity of noncanonical amino acid incorporation was verified with mass spectrometry and x-ray crystallography and demonstrated that RC variants exhibit no significant structural alterations relative to wild-type. Ultrafast transient absorption spectroscopy indicates the excited primary electron donor, P*, decays via an approximately 4 ps and 20 ps population to produce the charge-separated state P+HA- in all variants. Global analysis indicates that in the 4 ps population P+HA- forms through a 2-step process P* –> P+BA– –> P+HA-, while in the 20 ps population it forms via a 1-step P* –> P+HA– superexchange mechanism. The percentage of P* population that decays via the superexchange route varies from approximately 25% to 45% among variants while in wild-type this percentage is approximately 15%. Increases in the P* population which decays via superexchange correlates with increases in free energy of the P+BA– intermediate caused by a given M210 tyrosine analog. This was experimentally estimated through resonance Stark spectroscopy, redox titrations, and near-infrared absorption measurements. As the most energetically perturbative variant, 3-nitrotyrosine at M210 creates an approximately 110 meV increase in the free energy of P+BA– along with a dramatic diminution of the 1030 nm transient absorption band indicative of P+BA– formation. Collectively this work indicates the tyrosine at M210 tunes the mechanism of primary electron transfer in the RC.<br>


2021 ◽  
Author(s):  
Jared Weaver ◽  
Chi-Yun Lin ◽  
Kaitlyn M. Faries ◽  
Irimpan Mathews ◽  
Silvia Russi ◽  
...  

Photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides were engineered to vary the electronic properties of a key tyrosine close to an essential electron transfer component (M210) via its replacement with site-specific genetically encoded noncanonical amino acid tyrosine analogs. High fidelity of noncanonical amino acid incorporation was verified with mass spectrometry and x-ray crystallography and demonstrated that RC variants exhibit no significant structural alterations relative to wild-type. Ultrafast transient absorption spectroscopy indicates the excited primary electron donor, P*, decays via an approximately 4 ps and 20 ps population to produce the charge-separated state P+HA- in all variants. Global analysis indicates that in the 4 ps population P+HA- forms through a 2-step process P* –> P+BA– –> P+HA-, while in the 20 ps population it forms via a 1-step P* –> P+HA– superexchange mechanism. The percentage of P* population that decays via the superexchange route varies from approximately 25% to 45% among variants while in wild-type this percentage is approximately 15%. Increases in the P* population which decays via superexchange correlates with increases in free energy of the P+BA– intermediate caused by a given M210 tyrosine analog. This was experimentally estimated through resonance Stark spectroscopy, redox titrations, and near-infrared absorption measurements. As the most energetically perturbative variant, 3-nitrotyrosine at M210 creates an approximately 110 meV increase in the free energy of P+BA– along with a dramatic diminution of the 1030 nm transient absorption band indicative of P+BA– formation. Collectively this work indicates the tyrosine at M210 tunes the mechanism of primary electron transfer in the RC.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840049
Author(s):  
Akihiro Furube ◽  
Takahiro Arai ◽  
Masahiro Okazaki ◽  
Shinichiro Yanagiya ◽  
Liang-Yih Chen ◽  
...  

A photoanode using dye-sensitized ZnO nanowire (NW) is a good candidate for low-cost, colorful, light-weight and flexible solar cell material. We have synthesized a ZnO NW anode and a ZnO nanowire–nanoparticle (NWNP) anode, in which ZnO nanoparticles (NPs) are decollated on the surface of NWs. Photo-induced electron transfer dynamics from the excited state of sensitizer dye (D149) to the conduction band of ZnO NW and ZnO NWNP was clarified using femtosecond transient absorption spectroscopy. The decay of the single excited state ([Formula: see text]) of D149 was faster in ZnO NW than that of ZnO NWNP, indicating that NW is more suitable as an efficient electron acceptor.


Author(s):  
Georgia Thornton ◽  
Ryan Phelps ◽  
Andrew Orr-Ewing

The polymerization of photoexcited N-ethylcarbazole (N-EC) in the presence of an electron acceptor begins with an electron transfer (ET) step to generate a radical cation of N-EC (N-EC+.). Here, the...


2016 ◽  
Vol 18 (21) ◽  
pp. 14644-14653 ◽  
Author(s):  
Adam S. Chatterley ◽  
Florian Lackner ◽  
Daniel M. Neumark ◽  
Stephen R. Leone ◽  
Oliver Gessner

Using femtosecond time-resolved extreme ultraviolet absorption spectroscopy, the dissociation dynamics of the haloalkane 1,2-dibromoethane (DBE) have been explored following strong field ionization by femtosecond near infrared pulses at intensities between 7.5 × 1013 and 2.2 × 1014 W cm−2.


Sign in / Sign up

Export Citation Format

Share Document