scholarly journals In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-1,5-bisphosphate carboxylase of Chlamydomonas reinhardtii.

1977 ◽  
Vol 74 (3) ◽  
pp. 1082-1085 ◽  
Author(s):  
B. Dobberstein ◽  
G. Blobel ◽  
N. H. Chua
1979 ◽  
Vol 83 (3) ◽  
pp. 615-622 ◽  
Author(s):  
G W Schmidt ◽  
A Devillers-Thiery ◽  
H Desruisseaux ◽  
G Blobel ◽  
N H Chua

A precursor (pS) to the small subunit (S) of ribulose1-,5-bisphosphate carboxylase is the major product of cell-free protein synthesis directed by poly(A) containing RNA from Chlamydomonas reinhardtii. We present sequence data for in vitro-synthesized pS, for in vitro-synthesized S that in generated from pS by posttranslational incubation with a Chlamydomonas cell extract, and for in vitro-synthesized, mature S. We show that pS contains an NH2-terminal extension of 44 amino acid residues that is removed by cleavage at the correct site when pS is converted to S by an endoprotease present in the Chlamydomonas cell extract.


1994 ◽  
Vol 14 (6) ◽  
pp. 4011-4019
Author(s):  
J A Nelson ◽  
P B Savereide ◽  
P A Lefebvre

We have cloned and sequenced the CRY1 gene, encoding ribosomal protein S14 in Chlamydomonas reinhardtii, and found that it is highly similar to S14/rp59 proteins from other organisms, including mammals, Drosophila melanogaster, and Saccharomyces cerevisiae. We isolated a mutant strain resistant to the eukaryotic translational inhibitors cryptopleurine and emetine in which the resistance was due to a missense mutation (CRY1-1) in the CRY1 gene; resistance was dominant in heterozygous stable diploids. Cotransformation experiments using the CRY1-1 gene and the gene for nitrate reductase (NIT1) produced a low level of resistance to cryptopleurine and emetine. Resistance levels were increased when the CRY1-1 gene was placed under the control of a constitutive promoter from the ribulose bisphosphate carboxylase/oxygenase small subunit 2 (RBCS2) gene. We also found that the 5' untranslated region of the CRY1 gene was required for expression of the CRY1-1 transgene. Direct selection of emetine-resistant transformants was possible when transformed cells were first induced to differentiate into gametes by nitrogen starvation and then allowed to dedifferentiate back to vegetative cells before emetine selection was applied. With this transformation protocol, the RBCS2/CRY1-1 dominant selectable marker gene is a powerful tool for many molecular genetic applications in C. reinhardtii.


1982 ◽  
Vol 94 (1) ◽  
pp. 201-206 ◽  
Author(s):  
F A Burr ◽  
B Burr

We studied three mutations, opaque-2 (o2), opaque-7 (o7), and floury-2(fI2), each of which causes a depression in zein synthesis. We examined the processing efficiencies of the rough endoplasmic reticulum membranes in vitro, the levels of RNA transcription using cloned zein probes, and the genomic organization of the zein sequences as possible sites for the genetic defects. The results obtained indicate that the steps in prezein translation and processing occurring on the protein body membranes are not accountable for the lowered zein content in any of the mutations. The o2 mutation that typically shows a paucity of 22.5-kdalton zein polypeptides was found to have a concomitant reduction in a particular subgroup of mRNAs coding for this size class. Southern analyses suggest that the o2 mutation is not the result of a large deletion of tandem-linked zein genes.


1995 ◽  
Vol 15 (12) ◽  
pp. 6641-6652 ◽  
Author(s):  
M M Tanzer ◽  
R B Meagher

The degradation of the soybean SRS4 mRNA, which encodes the small subunit of ribulose-1,5-bisphosphate carboxylase, yields a set of proximal (5' intact) and distal (3' intact) products both in vivo and in vitro. These products are generated by endonucleolytic cleavages that occur essentially in a random order, although some products are produced more rapidly than others. Comparison of sizes of products on Northern (RNA) blots showed that the combined sizes of pairs of proximal and distal products form contiguous full-length SRS4 mRNAs. When the 3' ends of the proximal products and the 5' ends of the distal products were mapped by S1 nuclease and primer extension assays, respectively, both sets of ends mapped to the same sequences within the SRS4 mRNA. A small in vitro-synthesized RNA fragment containing one cleavage site inhibited cleavage of all major sites, equivalently consistent with one enzymatic activity generating the endonucleolytic cleavage products. These products were rich in GU nucleotides, but no obvious consensus sequence was found among several cleavage sites. Preliminary evidence suggested that secondary structure could play a role in site selection. The structures of the 5' ends of the proximal products and the 3' ends of the distal products were examined. Proximal products were found with approximately equal frequency in both m7G cap(+) and m7G cap(-) fractions, suggesting that the endonucleolytic cleavage events occurred independently of the removal of the 5' cap structure. Distal products were distributed among fractions with poly(A) tails ranging from undetectable to greater than 100 nucleotides in length, suggesting that the endonucleolytic cleavage events occurred independently of poly(A) tail shortening. Together, these data support a stochastic endonuclease model in which an endonucleolytic cleavage event is the initial step in SRS4 mRNA degradation.


Sign in / Sign up

Export Citation Format

Share Document