scholarly journals On the molecular basis of transition mutations: frequencies of forming 2-aminopurine.cytosine and adenine.cytosine base mispairs in vitro.

1981 ◽  
Vol 78 (5) ◽  
pp. 2864-2868 ◽  
Author(s):  
S. M. Watanabe ◽  
M. F. Goodman
Keyword(s):  
2020 ◽  
Author(s):  
Sean A. Newmister ◽  
Kinshuk Raj Srivastava ◽  
Rosa V. Espinoza ◽  
Kersti Caddell Haatveit ◽  
Yogan Khatri ◽  
...  

Biocatalysis offers an expanding and powerful strategy to construct and diversify complex molecules by C-H bond functionalization. Due to their high selectivity, enzymes have become an essential tool for C-H bond functionalization and offer complementary reactivity to small-molecule catalysts. Hemoproteins, particularly cytochromes P450, have proven effective for selective oxidation of unactivated C-H bonds. Previously, we reported the in vitro characterization of an oxidative tailoring cascade in which TamI, a multifunctional P450 functions co-dependently with the TamL flavoprotein to catalyze regio- and stereoselective hydroxylations and epoxidation to yield tirandamycin A and tirandamycin B. TamI follows a defined order including 1) C10 hydroxylation, 2) C11/C12 epoxidation, and 3) C18 hydroxylation. Here we present a structural, biochemical, and computational investigation of TamI to understand the molecular basis of its substrate binding, diverse reactivity, and specific reaction sequence. The crystal structure of TamI in complex with tirandamycin C together with molecular dynamics simulations and targeted mutagenesis suggest that hydrophobic interactions with the polyene chain of its natural substrate are critical for molecular recognition. QM/MM calculations and molecular dynamics simulations of TamI with variant substrates provided detailed information on the molecular basis of sequential reactivity, and pattern of regio- and stereo-selectivity in catalyzing the three-step oxidative cascade.<br>


1996 ◽  
Vol 271 (43) ◽  
pp. 27188
Author(s):  
Lloyd W. Ruddock ◽  
Jeremy J.F. Coen ◽  
Caroline Cheesman ◽  
Robert B. Freedman ◽  
Timothy R. Hirst

1994 ◽  
Vol 107 (8) ◽  
pp. 2249-2257 ◽  
Author(s):  
T. Asada ◽  
H. Shibaoka

As part of our efforts to understand the molecular basis of the microtubule-associated motility that is involved in cytokinesis in higher plant cells, an attempt was made to identify proteins with the ability to translocate microtubules in an extract from isolated phragmoplasts. Homogenization of isolated phragmoplasts in a solution that contained MgATP, MgGTP and a high concentration of NaCl resulted in the release from phragmoplasts of factors with ATPase and GTPase activity that were stimulated by microtubules. A protein fraction with microtubule-dependent ATPase and GTPase activity caused minus-end-headed gliding of microtubules in the presence of ATP or GTP. Polypeptides with microtubule-translocating activity cosedimented with microtubules that had been assembled in vitro from brain tubulin and were dissociated from sedimented microtubules by addition of ATP or GTP. After cosedimentation and dissociation procedures, a 125 kDa polypeptide and a 120 kDa polypeptide were recovered in a fraction that supported minus-end-headed gliding of microtubules. The rate of microtubule gliding that was caused by the fraction that contained the 125 kDa and 120 kDa polypeptides as main components was 1.28 microns/minute in the presence of ATP and 0.50 microns/minute in the presence of GTP. This fraction contained some microtubule-associated polypeptides in addition to the 125 kDa and 120 kDa polypeptides, but a fraction that contained only these additional polypeptides did not cause any translocation of microtubules. Thus, it appeared that the 125 kDa and 120 kDa polypeptides were responsible for translocation of microtubules. These polypeptides with plus-end-directed motor activity may play an important role in formation of the cell plate and in the organization of the phragmoplast.


2021 ◽  
Vol 118 (35) ◽  
pp. e2103895118
Author(s):  
Hongmiao Hu ◽  
Shu Tian ◽  
Guohui Xie ◽  
Rui Liu ◽  
Nana Wang ◽  
...  

Arabidopsis TEMPRANILLO 1 (TEM1) is a transcriptional repressor that participates in multiple flowering pathways and negatively regulates the juvenile-to-adult transition and the flowering transition. To understand the molecular basis for the site-specific regulation of FLOWERING LOCUS T (FT) by TEM1, we determined the structures of the two plant-specific DNA-binding domains in TEM1, AP2 and B3, in complex with their target DNA sequences from the FT gene 5′-untranslated region (5′-UTR), revealing the molecular basis for TEM1 specificity for its DNA targets. In vitro binding assays revealed that the combination of the AP2 and B3 binding sites greatly enhanced the overall binding of TEM1 to the FT 5′-UTR, indicating TEM1 combinatorically recognizes the FT gene 5′-UTR. We further showed that TEM1 recruits the Polycomb repressive complex 2 (PRC2) to the FT 5′-UTR. The simultaneous binding of the TEM1 AP2 and B3 domains to FT is necessary for deposition of H3K27me3 at the FT 5′-UTR and for the flowering repressor function of TEM1. Overall, our data suggest that the combinatorial recognition of FT 5′-UTR by TEM1 ensures H3K27me3 deposition to precisely regulate the floral transition.


2021 ◽  
Author(s):  
Hauke S. Hillen ◽  
Elena Lavdovskaia ◽  
Franziska Nadler ◽  
Elisa Hanitsch ◽  
Andreas Linden ◽  
...  

Ribosome biogenesis is an essential process that requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. In particular, maturation of the peptidyl transferase center (PTC), the catalytic core of the ribosome, is mediated by universally conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial ribosomal large subunit (mtLSU) using a combination of endogenous complex purification, in vitro reconstitution and cryo-electron microscopy (cryo-EM). Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Subsequent addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch by releasing MTERF4-NSUN4 and GTPBP5 accompanied by the progression to a near-mature PTC state. In addition, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results define the molecular basis of dynamic GTPase-mediated PTC maturation during mitochondrial ribosome biogenesis and provide a framework for understanding step-wise progression of PTC folding as a critical quality control checkpoint in all translation systems.


2021 ◽  
Author(s):  
Puji Budi Setia Asih ◽  
Din Syafruddin

Resistance to antimalarial drugs is a threat to global efforts to eliminate malaria by 2030. Currently, treatment for vivax malaria uses chloroquine or ACT for uncomplicated P. vivax whereas primaquine is given to eliminate latent liver stage infections (a method known as radical cure). Studies on P. vivax resistance to antimalarials and the molecular basis of resistance lags far behind the P. falciparum as in vitro cultivation of the P. vivax has not yet been established. Therefore, data on the P. vivax resistance to any antimalarial drugs are generated through in vivo studies or through monitoring of antimalarial treatments in mixed species infection. Indirect evidence through drug selective pressure on the parasites genome, as evidenced by the presence of the molecular marker(s) for drug resistance in areas where P. falciparum and P. vivax are distributed in sympatry may reflect, although require validation, the status of P. vivax resistance. This review focuses on the currently available data that may represent the state-of-the art of the P. vivax resistance status to antimalarial to anticipate the challenge for malaria elimination by 2030.


2012 ◽  
Vol 03 (03) ◽  
pp. 256-258
Author(s):  
Ken-ichi Tanaka ◽  
Takeshi Nanba ◽  
Tomoyuki Furubayashi ◽  
Yasuko Noda ◽  
Luther James Willmore ◽  
...  

2019 ◽  
Vol 47 (19) ◽  
pp. 10388-10399 ◽  
Author(s):  
Na Wang ◽  
Hongyu Bao ◽  
Liu Chen ◽  
Yanhong Liu ◽  
Yue Li ◽  
...  

Abstract HMCES and yedK were recently identified as sensors of abasic sites in ssDNA. In this study, we present multiple crystal structures captured in the apo-, nonspecific-substrate-binding, specific-substrate-binding, and product-binding states of yedK. In combination with biochemical data, we unveil the molecular basis of AP site sensing in ssDNA by yedK. Our results indicate that yedK has a strong preference for AP site-containing ssDNA over native ssDNA and that the conserved Glu105 residue is important for identifying AP sites in ssDNA. Moreover, our results reveal that a thiazolidine linkage is formed between yedK and AP sites in ssDNA, with the residues that stabilize the thiazolidine linkage important for the formation of DNA-protein crosslinks between yedK and the AP sites. We propose that our findings offer a unique platform to develop yedK and other SRAP domain-containing proteins as tools for detecting abasic sites in vitro and in vivo.


2020 ◽  
Vol 48 (6) ◽  
pp. 3181-3194 ◽  
Author(s):  
Jing-Bo Zhou ◽  
Yong Wang ◽  
Qi-Yu Zeng ◽  
Shi-Xin Meng ◽  
En-Duo Wang ◽  
...  

Abstract N 6-Threonylcarbamoyladenosine (t6A) is a universal tRNA modification essential for translational accuracy and fidelity. In human mitochondria, YrdC synthesises an l-threonylcarbamoyl adenylate (TC-AMP) intermediate, and OSGEPL1 transfers the TC-moiety to five tRNAs, including human mitochondrial tRNAThr (hmtRNAThr). Mutation of hmtRNAs, YrdC and OSGEPL1, affecting efficient t6A modification, has been implicated in various human diseases. However, little is known about the tRNA recognition mechanism in t6A formation in human mitochondria. Herein, we showed that OSGEPL1 is a monomer and is unique in utilising C34 as an anti-determinant by studying the contributions of individual bases in the anticodon loop of hmtRNAThr to t6A modification. OSGEPL1 activity was greatly enhanced by introducing G38A in hmtRNAIle or the A28:U42 base pair in a chimeric tRNA containing the anticodon stem of hmtRNASer(AGY), suggesting that sequences of specific hmtRNAs are fine-tuned for different modification levels. Moreover, using purified OSGEPL1, we identified multiple acetylation sites, and OSGEPL1 activity was readily affected by acetylation via multiple mechanisms in vitro and in vivo. Collectively, we systematically elucidated the nucleotide requirement in the anticodon loop of hmtRNAs, and revealed mechanisms involving tRNA sequence optimisation and post-translational protein modification that determine t6A modification levels.


Sign in / Sign up

Export Citation Format

Share Document