scholarly journals Expression of Ia-like antigens by human vascular endothelial cells is inducible in vitro: demonstration by monoclonal antibody binding and immunoprecipitation.

1982 ◽  
Vol 79 (21) ◽  
pp. 6641-6645 ◽  
Author(s):  
J. S. Pober ◽  
M. A. Gimbrone
Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 905-911 ◽  
Author(s):  
Monica Corada ◽  
Lucia Zanetta ◽  
Fabrizio Orsenigo ◽  
Ferruccio Breviario ◽  
Maria Grazia Lampugnani ◽  
...  

Abstract Vascular endothelial cadherin (VE-cadherin) is an endothelial-specific, trans-membrane protein that promotes homophilic cell adhesion. Inhibition of VE-cadherin by the blocking monoclonal antibody (mAb) BV13 inhibited angiogenesis and tumor growth in vivo. However, this effect was accompanied by a marked increase in lung and heart permeability. In the present paper, we characterize a different VE-cadherin mAb (BV14) that is able to inhibit angiogenesis without affecting vascular permeability. In vitro studies show that BV14, in contrast to BV13, did not increase paracellular permeability of endothelial monolayers and did not disrupt VE-cadherin clusters at junctions. However, both antibodies could inhibit formation of vascularlike structures in collagen gels and increase migration of endothelial cells into wounded areas. In vivo, BV14 and BV13 were equally active in inhibiting angiogenesis in the mouse cornea and in reducing the growth of hemangioma and C6 glioma. In contrast to BV13, BV14 did not change vascular permeability in all the organs tested and at any dose used. BV14 and BV13 bind to VE-cadherin extracellular repeats EC4 and EC1, respectively. We propose that, in resting vessels, where junctions are stable and well-structured, antibody binding to EC1 but not EC4 disrupts their organization and increases permeability. In contrast, in growing vessels, where endothelial cells are migrating and junctions are weaker, antibody binding to EC4 may be sufficient to disrupt cell-to-cell adhesion and inhibit assembly of new vascular structures.


1996 ◽  
Vol 316 (3) ◽  
pp. 703-707 ◽  
Author(s):  
Ralf BIRKENHÄGER ◽  
Bernard SCHNEPPE ◽  
Wolfgang RÖCKL ◽  
Jörg WILTING ◽  
Herbert A. WEICH ◽  
...  

Vascular endothilial growth factor (VEGF) and placenta growth factor (PIGF) are members of a dimeric-growth-factor family with angiogenic properties. VEGF is a highly potent and specific mitogen for endothelial cells, playing a vital role in angiogenesis in vivo. The role of PIGF is less clear. We expressed the monomeric splice forms VEGF-165, VEGF-121, PIGF-1 and PlGF-2 as unfused genes in Escherichia coli using the pCYTEXP expression system. In vitro dimerization experiments revealed that both homo- and hetero-dimers can be formed from these monomeric proteins. The dimers were tested for their ability to promote capillary growth in vivo and stimulate DNA synthesis in cultured human vascular endothelial cells. Heterodimers comprising different VEGF splice forms, or combinations of VEGF/PlGF splice forms, showed mitogenic activity. The results demonstrate that four different heterodimeric growth factors are likely to have as yet uncharacterized functions in vivo.


2018 ◽  
Vol 47 (1) ◽  
pp. 453-469 ◽  
Author(s):  
Ying Yang ◽  
Hui Luo ◽  
Can Zhou ◽  
Rongyi Zhang ◽  
Si Liu ◽  
...  

Objective This study aimed to examine regulation of capillary tubules and lipid formation in vascular endothelial cells and macrophages via extracellular vesicle-mediated microRNA (miRNA)-4306 transfer Methods Whole blood samples (12 mL) were collected from 53 patients, and miR-4306 levels in extracellular vesicles (EVs) were analyzed by reverse transcription-polymerase chain reaction. Human coronary artery vascular endothelial cells (HCAECs) and human monocyte-derived macrophages (HMDMs) were transfected with a scrambled oligonucleotide, an miR-4306 mimic, or an anti-miR-4306 inhibitor. The direct effect of miR-4306 on the target gene was analyzed by a dual-luciferase reporter assay. Results EV-contained miR-4306 released from HMDMs was significantly upregulated in coronary artery disease. Oxidized low-density lipoprotein (ox-LDL)-stimulated HMDM-derived EVs inhibited proliferation, migration, and angiogenesis abilities of HCAECs in vitro. However, ox-LDL-stimulated HCAEC-derived EVs enhanced lipid formation of HMDMs. The possible mechanism of these findings was partly due to EV-mediated miR-4306 upregulation of the Akt/nuclear factor kappa B signaling pathway. Conclusions Paracrine cellular crosstalk between HCAECs and HMDMs probably supports the pro-atherosclerotic effects of EVs under ox-LDL stress.


2002 ◽  
Vol 282 (4) ◽  
pp. C917-C925 ◽  
Author(s):  
Masako Yasuda ◽  
Shunichi Shimizu ◽  
Kyoko Ohhinata ◽  
Shinji Naito ◽  
Shogo Tokuyama ◽  
...  

Ets-1, which stimulates metalloproteinase gene transcription, has a key role in angiogenesis. We first examined whether activated polymorphonuclear leukocytes (PMNs) enhanced angiogenesis through the induction of Ets-1. Addition of activated PMNs to endothelial cells stimulated both in vitro angiogenesis in collagen gel and Ets-1 expression. Both angiogenesis and Ets-1 expression induced by PMNs were reduced by ets-1 antisense oligonucleotide, suggesting that Ets-1 is an important factor in PMN-induced angiogenesis. Although intercellular adhesion molecule (ICAM)-1 and E-selectin are involved in PMN-induced angiogenesis, the mechanisms underlying their roles in angiogenesis have yet to be elucidated. PMN-induced Ets-1 expression was reduced by a monoclonal antibody against ICAM-1 but not E-selectin despite the inhibition of PMN-induced angiogenesis by both antibodies. Moreover, the stimulation of angiogenesis by H2O2without PMNs was inhibited by a monoclonal antibody to E-selectin but not ICAM-1. These findings suggested that ICAM-1 in endothelial cells may act as a signaling receptor to induce Ets-1 expression, whereas E-selectin seems to function in the formation of tubelike structures in vascular endothelial cell cultures.


Sign in / Sign up

Export Citation Format

Share Document