scholarly journals Mechanisms of integration of de novo-synthesized polypeptides into membranes: signal-recognition particle is required for integration into microsomal membranes of calcium ATPase and of lens MP26 but not of cytochrome b5.

1983 ◽  
Vol 80 (23) ◽  
pp. 7249-7253 ◽  
Author(s):  
D. J. Anderson ◽  
K. E. Mostov ◽  
G. Blobel
1982 ◽  
Vol 95 (2) ◽  
pp. 470-477 ◽  
Author(s):  
R Gilmore ◽  
P Walter ◽  
G Blobel

The signal recognition particle (SRP)-mediated elongation arrest of the synthesis of nascent secretory proteins can be released by salt-extracted rough microsomal membranes (Walter, P., and G. Blobel, 1981, J. Cell Biol, 91:557-561). Both the arrest-releasing activity and the signal peptidase activity were solubilized from rough microsomal membranes using the nonionic detergent Nikkol in conjunction with 250 mM KOAc. Chromatography of this extract on SRP-Sepharose separated the arrest-releasing activity from the signal peptidase activity. Further purification of the arrest-releasing activity using sucrose gradient centrifugation allowed the identification of a 72,000-dalton polypeptide as the protein responsible for the activity. Based upon its affinity for SRP, we refer to the 72,000-dalton protein as the SRP receptor. A 60,000-dalton protein fragment (Meyer, D. I., and B. Dobberstein, 1980, J. Cell Biol., 87:503-508) that had been shown previously to reconstitute the translocation activity of protease-digested membranes, was shown here by peptide mapping and immunological criteria to be derived from the SRP receptor. Findings that are in part similar, and in part different from these reported here and in our preceding paper were made independently (Meyer, D. I., E. Krause, and B. Dobberstein, 1982, Nature (Lond.). 297:647-650) and the term "docking protein" was proposed for the SRP receptor. A lower membrane content of both SRP and the SRP receptor than that of membrane bound ribosomes suggests that the SRP-SRP receptor interaction may exist transiently during the formation of a ribosome-membrane junction and during translocation.


1989 ◽  
Vol 109 (6) ◽  
pp. 2617-2622 ◽  
Author(s):  
S L Wolin ◽  
P Walter

Signal recognition particle (SRP) is a ribonucleoprotein that functions in the targeting of ribosomes synthesizing presecretory proteins to the ER. SRP binds to the signal sequence as it emerges from the ribosome, and in wheat germ extracts, arrests further elongation. The translation arrest is released when SRP interacts with its receptor on the ER membrane. We show that the delay of elongation mediated by SRP is not unique to wheat germ translation extracts. Addition of mammalian SRP to reticulocyte lysates resulted in a delay of preprolactin synthesis due to increased ribosome pausing at specific sites on preprolactin mRNA. Addition of canine pancreatic microsomal membranes to reticulocyte lysates resulted in an acceleration of preprolactin synthesis, suggesting that the endogenous SRP present in the reticulocyte lysate also delays synthesis of secretory proteins.


1994 ◽  
Vol 5 (8) ◽  
pp. 887-897 ◽  
Author(s):  
P J Rapiejko ◽  
R Gilmore

The identification of GTP-binding sites in the 54-kDa subunit of the signal recognition particle (SRP) and in both the alpha and beta subunits of the SRP receptor has complicated the task of defining the step in the protein translocation reaction that is controlled by the GTP-binding site in the SRP. Ribonucleotide binding assays show that the purified SRP can bind GDP or GTP. However, crosslinking experiments show that SRP54 can recognize the signal sequence of a nascent polypeptide in the absence of GTP. Targeting of SRP-ribosome-nascent polypeptide complexes, formed in the absence of GTP, to microsomal membranes likewise proceeds normally. To separate the GTPase cycles of SRP54 and the alpha subunit of the SRP receptor (SR alpha), we employed an SR alpha mutant that displays a markedly reduced affinity for GTP. We observed that the dissociation of SRP54 from the signal sequence and the insertion of the nascent polypeptide into the translocation site could only occur when GTP binding to SR alpha was permitted. These data suggest that the GTP binding and hydrolysis cycles of both SRP54 and SR alpha are initiated upon formation of the SRP-SRP receptor complex.


1993 ◽  
Vol 121 (6) ◽  
pp. 1211-1219 ◽  
Author(s):  
S L Wolin ◽  
P Walter

Ribosomes synthesizing nascent secretory proteins are targeted to the membrane by the signal recognition particle (SRP), a small ribonucleoprotein that binds to the signal peptide as it emerges from the ribosome. SRP arrests further elongation, causing ribosomes to stack behind the arrested ribosome. Upon interaction of SRP with its receptor on the ER membrane, the translation arrest is released and the ribosome becomes bound to the ER membrane. We have examined the distribution of unattached and membrane-bound ribosomes during the translation of mRNAs encoding two secretory proteins, bovine preprolactin and rat preproinsulin I. We find that the enhancement of ribosome stacking that occurs when SRP arrests translation of these proteins is relaxed in the presence of microsomal membranes. We also demonstrate that two previously described populations of membrane-associated ribosomes, distinguished by their sensitivity to high salt or EDTA extraction, correspond to ribosomes that have synthesized differing lengths of the nascent polypeptide. This analysis has revealed that nascent chain insertion into the membrane begins at distinct points for different presecretory proteins.


1989 ◽  
Vol 108 (3) ◽  
pp. 797-810 ◽  
Author(s):  
D W Andrews ◽  
L Lauffer ◽  
P Walter ◽  
V R Lingappa

The signal recognition particle (SRP) and SRP receptor act sequentially to target nascent secretory proteins to the membrane of the ER. The SRP receptor consists of two subunits, SR alpha and SR beta, both tightly associated with the ER membrane. To examine the biogenesis of the SRP receptor we have developed a cell-free assay system that reconstitutes SR alpha membrane assembly and permits both anchoring and functional properties to be assayed independently. Our experiments reveal a mechanism involving at least two distinct steps, targeting to the ER and anchoring of the targeted molecule on the cytoplasmic face of the membrane. Both steps can be reconstituted in vitro to restore translocation activity to ER microsomes inactivated by alkylation with N-ethyl-maleimide. The characteristics elucidated for this pathway distinguish it from SRP-dependent targeting of secretory proteins, SRP-independent ER translocation of proteins such as prepromellitin, and direct insertion mechanisms of the type exemplified by cytochrome b5.


1982 ◽  
Vol 95 (2) ◽  
pp. 463-469 ◽  
Author(s):  
R Gilmore ◽  
G Blobel ◽  
P Walter

Salt-extracted microsomal membranes (K-RM) contain an activity that is capable of releasing the signal recognition particle (SRP)-mediated elongation arrest of the synthesis of secretory polypeptides (Walter, P., and G. Blobel, 1981, J. Cell Biol., 91:557-561). This arrest-releasing activity was shown to be a function of an integral microsomal membrane protein, termed the SRP receptor (Gilmore, R., P. Walter, and G. Blobel, 1982, J. Cell Biol., 95:470-477). We attempted to solubilize the arrest-releasing activity of the SRP receptor by mild protease digestion of K-RM using either trypsin or elastase. We found, however, that neither a trypsin, nor an elastase "solubilized" supernatant fraction exhibited the arrest-releasing activity. Only when either the trypsin- or elastase-derived supernatant fraction was combined with the trypsinized membrane fraction, which by itself was also inactive, was the arrest-releasing activity restored. Release of the elongation arrest was followed by the translocation of the secretory protein across the microsomal membrane and the removal of the signal peptide. Thus, although we have been unable to proteolytically sever the arrest-releasing activity from K-RM and thereby to uncouple the release of the elongation arrest from the process of chain translocation, we have been able to proteolytically dissect and reconstitute the arrest-releasing activity. Furthermore, we found that the arrest-releasing activity of the SRP receptor can be inactivated by alkylation of K-RM with N-ethylmaleimide.


1989 ◽  
Vol 108 (3) ◽  
pp. 789-795 ◽  
Author(s):  
C V Nicchitta ◽  
G Blobel

We have investigated the effects of chemical alkylation of microsomal membranes on nascent chain binding and translocation. Assays were conducted using either full-length or truncated preprolactin transcripts in combination with a reconstituted membrane system consisting of proteolyzed rough microsomes and the cytoplasmic domain of the signal recognition particle receptor. Treatment of rough microsomes with N-ethylmaleimide was observed to inhibit preprolactin processing at a site other than the signal recognition particle or the signal recognition particle receptor. As formation of a translocation competent junction between the ribosome/nascent chain complex and the membrane has recently been demonstrated to require GTP (Connolly, T., and R. Gilmore. J. Cell Biol. 1986. 103:2253-2261), the effects of membrane alkylation on this parameter were assessed. N-ethylmaleimide treatment did not inhibit nascent chain targeting or GTP-dependent signal sequence insertion. Translocation of the targeted and inserted nascent chain was, however, blocked. These data indicate (a) that the process of nascent chain translocation is distinct from targeting and signal sequence insertion, and (b) translocation of the peptide chain across the membrane is mediated by an N-ethylmaleimide-sensitive membrane protein component(s). To further substantiate the observation that nascent chain targeting and signal sequence insertion can be distinguished from translocation, the temperature dependencies of the two phenomena were compared. Signal sequence insertion occurred at low temperatures (4 degrees C) and was maximal between 10 and 15 degrees C. Translocation was only observed at higher temperatures and was maximal between 25 and 30 degrees C.


Sign in / Sign up

Export Citation Format

Share Document