scholarly journals Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor.

1982 ◽  
Vol 95 (2) ◽  
pp. 470-477 ◽  
Author(s):  
R Gilmore ◽  
P Walter ◽  
G Blobel

The signal recognition particle (SRP)-mediated elongation arrest of the synthesis of nascent secretory proteins can be released by salt-extracted rough microsomal membranes (Walter, P., and G. Blobel, 1981, J. Cell Biol, 91:557-561). Both the arrest-releasing activity and the signal peptidase activity were solubilized from rough microsomal membranes using the nonionic detergent Nikkol in conjunction with 250 mM KOAc. Chromatography of this extract on SRP-Sepharose separated the arrest-releasing activity from the signal peptidase activity. Further purification of the arrest-releasing activity using sucrose gradient centrifugation allowed the identification of a 72,000-dalton polypeptide as the protein responsible for the activity. Based upon its affinity for SRP, we refer to the 72,000-dalton protein as the SRP receptor. A 60,000-dalton protein fragment (Meyer, D. I., and B. Dobberstein, 1980, J. Cell Biol., 87:503-508) that had been shown previously to reconstitute the translocation activity of protease-digested membranes, was shown here by peptide mapping and immunological criteria to be derived from the SRP receptor. Findings that are in part similar, and in part different from these reported here and in our preceding paper were made independently (Meyer, D. I., E. Krause, and B. Dobberstein, 1982, Nature (Lond.). 297:647-650) and the term "docking protein" was proposed for the SRP receptor. A lower membrane content of both SRP and the SRP receptor than that of membrane bound ribosomes suggests that the SRP-SRP receptor interaction may exist transiently during the formation of a ribosome-membrane junction and during translocation.

1982 ◽  
Vol 95 (2) ◽  
pp. 463-469 ◽  
Author(s):  
R Gilmore ◽  
G Blobel ◽  
P Walter

Salt-extracted microsomal membranes (K-RM) contain an activity that is capable of releasing the signal recognition particle (SRP)-mediated elongation arrest of the synthesis of secretory polypeptides (Walter, P., and G. Blobel, 1981, J. Cell Biol., 91:557-561). This arrest-releasing activity was shown to be a function of an integral microsomal membrane protein, termed the SRP receptor (Gilmore, R., P. Walter, and G. Blobel, 1982, J. Cell Biol., 95:470-477). We attempted to solubilize the arrest-releasing activity of the SRP receptor by mild protease digestion of K-RM using either trypsin or elastase. We found, however, that neither a trypsin, nor an elastase "solubilized" supernatant fraction exhibited the arrest-releasing activity. Only when either the trypsin- or elastase-derived supernatant fraction was combined with the trypsinized membrane fraction, which by itself was also inactive, was the arrest-releasing activity restored. Release of the elongation arrest was followed by the translocation of the secretory protein across the microsomal membrane and the removal of the signal peptide. Thus, although we have been unable to proteolytically sever the arrest-releasing activity from K-RM and thereby to uncouple the release of the elongation arrest from the process of chain translocation, we have been able to proteolytically dissect and reconstitute the arrest-releasing activity. Furthermore, we found that the arrest-releasing activity of the SRP receptor can be inactivated by alkylation of K-RM with N-ethylmaleimide.


1989 ◽  
Vol 109 (6) ◽  
pp. 2617-2622 ◽  
Author(s):  
S L Wolin ◽  
P Walter

Signal recognition particle (SRP) is a ribonucleoprotein that functions in the targeting of ribosomes synthesizing presecretory proteins to the ER. SRP binds to the signal sequence as it emerges from the ribosome, and in wheat germ extracts, arrests further elongation. The translation arrest is released when SRP interacts with its receptor on the ER membrane. We show that the delay of elongation mediated by SRP is not unique to wheat germ translation extracts. Addition of mammalian SRP to reticulocyte lysates resulted in a delay of preprolactin synthesis due to increased ribosome pausing at specific sites on preprolactin mRNA. Addition of canine pancreatic microsomal membranes to reticulocyte lysates resulted in an acceleration of preprolactin synthesis, suggesting that the endogenous SRP present in the reticulocyte lysate also delays synthesis of secretory proteins.


2021 ◽  
Vol 22 (21) ◽  
pp. 11871
Author(s):  
A. Manuel Liaci ◽  
Friedrich Förster

Cleavable endoplasmic reticulum (ER) signal peptides (SPs) and other non-cleavable signal sequences target roughly a quarter of the human proteome to the ER. These short peptides, mostly located at the N-termini of proteins, are highly diverse. For most proteins targeted to the ER, it is the interactions between the signal sequences and the various ER targeting and translocation machineries such as the signal recognition particle (SRP), the protein-conducting channel Sec61, and the signal peptidase complex (SPC) that determine the proteins’ target location and provide translocation fidelity. In this review, we follow the signal peptide into the ER and discuss the recent insights that structural biology has provided on the governing principles of those interactions.


1994 ◽  
Vol 5 (8) ◽  
pp. 887-897 ◽  
Author(s):  
P J Rapiejko ◽  
R Gilmore

The identification of GTP-binding sites in the 54-kDa subunit of the signal recognition particle (SRP) and in both the alpha and beta subunits of the SRP receptor has complicated the task of defining the step in the protein translocation reaction that is controlled by the GTP-binding site in the SRP. Ribonucleotide binding assays show that the purified SRP can bind GDP or GTP. However, crosslinking experiments show that SRP54 can recognize the signal sequence of a nascent polypeptide in the absence of GTP. Targeting of SRP-ribosome-nascent polypeptide complexes, formed in the absence of GTP, to microsomal membranes likewise proceeds normally. To separate the GTPase cycles of SRP54 and the alpha subunit of the SRP receptor (SR alpha), we employed an SR alpha mutant that displays a markedly reduced affinity for GTP. We observed that the dissociation of SRP54 from the signal sequence and the insertion of the nascent polypeptide into the translocation site could only occur when GTP binding to SR alpha was permitted. These data suggest that the GTP binding and hydrolysis cycles of both SRP54 and SR alpha are initiated upon formation of the SRP-SRP receptor complex.


2009 ◽  
Vol 20 (17) ◽  
pp. 3965-3973 ◽  
Author(s):  
Peera Jaru-Ampornpan ◽  
Thang X. Nguyen ◽  
Shu-ou Shan

Cotranslational protein targeting by the signal recognition particle (SRP) requires the SRP RNA, which accelerates the interaction between the SRP and SRP receptor 200-fold. This otherwise universally conserved SRP RNA is missing in the chloroplast SRP (cpSRP) pathway. Instead, the cpSRP and cpSRP receptor (cpFtsY) by themselves can interact 200-fold faster than their bacterial homologues. Here, cross-complementation analyses revealed the molecular origin underlying their efficient interaction. We found that cpFtsY is 5- to 10-fold more efficient than Escherichia coli FtsY at interacting with the GTPase domain of SRP from both chloroplast and bacteria, suggesting that cpFtsY is preorganized into a conformation more conducive to complex formation. Furthermore, the cargo-binding M-domain of cpSRP provides an additional 100-fold acceleration for the interaction between the chloroplast GTPases, functionally mimicking the effect of the SRP RNA in the cotranslational targeting pathway. The stimulatory effect of the SRP RNA or the M-domain of cpSRP is specific to the homologous SRP receptor in each pathway. These results strongly suggest that the M-domain of SRP actively communicates with the SRP and SR GTPases and that the cytosolic and chloroplast SRP pathways have evolved distinct molecular mechanisms (RNA vs. protein) to mediate this communication.


1986 ◽  
Vol 103 (1) ◽  
pp. 241-253 ◽  
Author(s):  
M Hortsch ◽  
D Avossa ◽  
D I Meyer

Secretory proteins are synthesized on ribosomes bound to the membrane of the endoplasmic reticulum (ER). After the selection of polysomes synthesizing secretory proteins and their direction to the membrane of the ER via signal recognition particle (SRP) and docking protein respectively, the polysomes become bound to the ER membrane via an unknown, protein-mediated mechanism. To identify proteins involved in protein translocation, beyond the (SRP-docking protein-mediated) recognition step, controlled proteolysis was used to functionally inactivate rough microsomes that had previously been depleted of docking protein. As the membranes were treated with increasing levels of protease, they lost their ability to be functionally reconstituted with the active cytoplasmic fragment of docking protein (DPf). This functional inactivation did not correlate with a loss of either signal peptidase activity, nor with the ability of the DPf to reassociate with the membrane. It did correlate, however, with a loss of the ability of the microsomes to bind ribosomes. Ribophorins are putative ribosome-binding proteins. Immunoblots developed with monoclonal antibodies against canine ribophorins I and II demonstrated that no correlation exists between the protease-induced inability to bind ribosomes and the integrity of the ribophorins. Ribophorin I was 85% resistant and ribophorin II 100% resistant to the levels of protease needed to totally eliminate ribosome binding. Moreover, no direct association was found between ribophorins and ribosomes; upon detergent solubilization at low salt concentrations, ribophorins could be sedimented in the presence or absence of ribosomes. Finally, the alkylating agent N-ethylmaleimide was shown to be capable of inhibiting translocation (beyond the SRP-docking protein-mediated recognition step), but had no affect on the ability of ribosomes to bind to ER membranes. We conclude that potentially two additional proteinaceous components, as yet unidentified, are involved in protein translocation. One is protease sensitive and possibly involved in ribosome binding, the other is N-ethylmaleimide sensitive and of unknown function.


2008 ◽  
Vol 375 (2) ◽  
pp. 425-436 ◽  
Author(s):  
Sowmya Chandrasekar ◽  
Justin Chartron ◽  
Peera Jaru-Ampornpan ◽  
Shu-ou Shan

1993 ◽  
Vol 121 (6) ◽  
pp. 1271-1280 ◽  
Author(s):  
G Lüers ◽  
T Hashimoto ◽  
H D Fahimi ◽  
A Völkl

According to Poole et al. (1970, J. Cell Biol. 45:408-415), newly synthesized peroxisomal proteins are incorporated uniformly into peroxisomes (PO) of different size classes, suggesting that rat hepatic PO form a homogeneous population. There is however increasing cytochemical and biochemical evidence that PO in rat liver are heterogenous, undergoing significant modulations in shape and size in process of PO morphogenesis (Yamamoto and Fahimi, 1987. J. Cell Biol. 105:713-722). In the present study, the kinetics of incorporation of newly synthesized proteins into distinct PO-subpopulations have been studied using short-term in vivo labeling (5-90 min). Two distinct "heavy" and "light" crude PO fractions were prepared by differential pelleting from normal and regenerating liver, and highly purified PO were subsequently isolated by density-dependent metrizamide gradient centrifugation according to Völkl and Fahimi (1985. Eur. J. Biochem. 149:257-265). The peroxisomal fractions banded at 1.20 and 1.24 g x cm-3. They differed in their mean diameters and form-factors and particularly in respect to the activity of beta-oxidation enzymes which was higher in the "light" PO. Whereas the "light" PO exhibited a single immunoreactive band with the antibody to the 70-kD peroxisomal membrane protein the "heavy" PO contained an additional (68 kD) band. In pulse-labeling experiments "light" PO showed clearly a higher initial rate of incorporation than the "heavy" PO. The relative specific activity in the "heavy" PO fraction, however increased progressively reaching that of "light" PO by 90 min. These observations provide evidence for the existence of different PO populations in rat liver which differ in their morphological and biochemical properties as well as in their rates of incorporation of new proteins.


1993 ◽  
Vol 121 (6) ◽  
pp. 1211-1219 ◽  
Author(s):  
S L Wolin ◽  
P Walter

Ribosomes synthesizing nascent secretory proteins are targeted to the membrane by the signal recognition particle (SRP), a small ribonucleoprotein that binds to the signal peptide as it emerges from the ribosome. SRP arrests further elongation, causing ribosomes to stack behind the arrested ribosome. Upon interaction of SRP with its receptor on the ER membrane, the translation arrest is released and the ribosome becomes bound to the ER membrane. We have examined the distribution of unattached and membrane-bound ribosomes during the translation of mRNAs encoding two secretory proteins, bovine preprolactin and rat preproinsulin I. We find that the enhancement of ribosome stacking that occurs when SRP arrests translation of these proteins is relaxed in the presence of microsomal membranes. We also demonstrate that two previously described populations of membrane-associated ribosomes, distinguished by their sensitivity to high salt or EDTA extraction, correspond to ribosomes that have synthesized differing lengths of the nascent polypeptide. This analysis has revealed that nascent chain insertion into the membrane begins at distinct points for different presecretory proteins.


Sign in / Sign up

Export Citation Format

Share Document