scholarly journals Genetic basis of male sterility in hybrids between two closely related species of Drosophila.

1984 ◽  
Vol 81 (14) ◽  
pp. 4444-4447 ◽  
Author(s):  
J. A. Coyne
Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 789-796 ◽  
Author(s):  
Kyoichi Sawamura ◽  
John Roote ◽  
Chung-I Wu ◽  
Masa-Toshi Yamamoto

Abstract Recent genetic analyses of closely related species of Drosophila have indicated that hybrid male sterility is the consequence of highly complex synergistic effects among multiple genes, both conspecific and heterospecific. On the contrary, much evidence suggests the presence of major genes causing hybrid female sterility and inviability in the less-related species, D. melanogaster and D. simulans. Does this contrast reflect the genetic distance between species? Or, generally, is the genetic basis of hybrid male sterility more complex than that of hybrid female sterility and inviability? To clarify this point, the D. simulans introgression of the cytological region 34D-36A to the D. melanogaster genome, which causes recessive male sterility, was dissected by recombination, deficiency, and complementation mapping. The 450-kb region between two genes, Suppressor of Hairless and snail, exhibited a strong effect on the sterility. Males are (semi-)sterile if this region of the introgression is made homozygous or hemizygous. But no genes in the region singly cause the sterility; this region has at least two genes, which in combination result in male sterility. Further, the males are less fertile when heterozygous with a larger introgression, which suggests that dominant modifiers enhance the effects of recessive genes of male sterility. Such an epistatic view, even in the less-related species, suggests that the genetic complexity is special to hybrid male sterility.


2004 ◽  
Vol 83 (2) ◽  
pp. 83-89 ◽  
Author(s):  
MUNEO MATSUDA ◽  
YOSHIKO N. TOBARI

Parthenogenetic strains of several species have been found in the genus Drosophila. The mode of diploidization in the eggs of females has been found to be post-meiotic nuclear fusion. The genetic basis for this parthenogenesis is not understood but is believed to be under the control of a complex polygenic system. We found parthenogenetic females in an isofemale strain (LAE345) of D. pallidosa-like collected in 1981 at Lae, Papua New Guinea, and established a parthenogenetically reproducing strain. Parthenogenetic strains of D. ananassae and D. pallidosa collected at Taputimu, American Samoa had also been established by Futch (1972). D. ananassae, D. pallidosa and D. pallidosa-like are very closely related species belonging to the ananassae complex of the ananassae species subgroup of the melanogaster species group. Using these three species, we found that more than 80% of females from parthenogenetic strains produced progeny parthenogenetically and that inter-specific hybrid females also produced impaternate progeny. In the present report, we demonstrate that the mode of parthenogenesis of D. ananassae appears to be the post-meiotic nuclear doubling of a single meiotic product, and that a major gene responsible for the parthenogenesis maps to the left arm of the second chromosome of D. ananassae. We also suggest that the genetic basis for parthenogenesis capacity may be identical among the three closely related species. We discuss the function of the gene required for parthenogenesis and its significance for the evolutionary process.


2019 ◽  
Vol 37 (3) ◽  
pp. 864-880
Author(s):  
Alison Pischedda ◽  
Michael P Shahandeh ◽  
Thomas L Turner

Abstract The behaviors of closely related species can be remarkably different, and these differences have important ecological and evolutionary consequences. Although the recent boom in genotype–phenotype studies has led to a greater understanding of the genetic architecture and evolution of a variety of traits, studies identifying the genetic basis of behaviors are, comparatively, still lacking. This is likely because they are complex and environmentally sensitive phenotypes, making them difficult to measure reliably for association studies. The Drosophila species complex holds promise for addressing these challenges, as the behaviors of closely related species can be readily assayed in a common environment. Here, we investigate the genetic basis of an evolved behavioral difference, pupation site choice, between Drosophila melanogaster and D. simulans. In this study, we demonstrate a significant contribution of the X chromosome to the difference in pupation site choice behavior between these species. Using a panel of X-chromosome deficiencies, we screened the majority of the X chromosome for causal loci and identified two regions associated with this X-effect. We then collect gene disruption and RNAi data supporting a single gene that affects pupation behavior within each region: Fas2 and tilB. Finally, we show that differences in tilB expression correlate with the differences in pupation site choice behavior between species. This evidence associating two genes with differences in a complex, environmentally sensitive behavior represents the first step toward a functional and evolutionary understanding of this behavioral divergence.


2021 ◽  
Author(s):  
Mingzi Xu ◽  
Kerry L Shaw

Abstract In nature, closely related species commonly display divergent mating behaviors, suggesting a central role for such traits in the origin of species. Elucidating the genetic basis of divergence in these traits is necessary to understand the evolutionary process leading to reproductive barriers and speciation. The rapidly speciating Hawaiian crickets of the genus Laupala provides an ideal system for dissecting the genetic basis of mating behavior divergence. In Laupala, closely related species differ markedly in male song pulse rate and female preference for pulse rate. These behaviors play an important role in determining mating patterns. Previous studies identified a genetic architecture consisting of numerous small to moderate effect loci causing interspecific differences in pulse rate and preference, including colocalizing pulse rate and preference QTL on linkage group one (LG1). To further interrogate these QTL, we conduct a fine mapping study using high-density SNP linkage maps. With improved statistical power and map resolution, we provide robust evidence for genetic coupling between song and preference, along with two additional pulse rate QTL on LG1, revealing a more resolved picture of the genetic architecture underlying mating behavior divergence. Our sequence-based genetic map, along with dramatically narrowed QTL confidence intervals, allowed us to annotate genes within the QTL regions and identify several exciting candidate genes underlying variation in pulse rate and preference divergence. Such knowledge suggests potential molecular mechanisms underlying the evolution of behavioral barriers.


2005 ◽  
Vol 85 (1) ◽  
pp. 23-46 ◽  
Author(s):  
ARTYOM KOPP ◽  
OLGA BARMINA

Groups of recently diverged species offer invaluable glimpses into the history and genetic basis of speciation and phenotypic evolution. In this report, we combine phylogenetic and population-genetic approaches to reconstruct the evolutionary history of the Drosophila bipectinata species complex. This complex is a group of four closely related, largely sympatric species – D. bipectinata, D. parabipectinata, D. malerkotliana and D. pseudoananassae. Using the sequences of one mitochondrial and six nuclear loci, we show that D. bipectinata and D. parabipectinata are the two most closely related species, and that together with D. malerkotliana they form a monophyletic clade to which D. pseudoananassae is a relatively distant outgroup. Genetic divergence among D. bipectinata, D. parabipectinata and D. malerkotliana is extremely low, and we estimate that these species diverged only 283000–385000 years ago. We also find that mitochondrial DNA shows evidence of recent gene flow across species boundaries. Despite the low genetic divergence, species of the bipectinata complex show an unusually high degree of morphological differentiation. This contrast underscores the importance of understanding the genetic basis of functional differentiation among closely related species.


Sign in / Sign up

Export Citation Format

Share Document