scholarly journals Infection of B lymphocytes by a human herpesvirus, Epstein-Barr virus, is blocked by calmodulin antagonists.

1984 ◽  
Vol 81 (15) ◽  
pp. 4955-4959 ◽  
Author(s):  
G. R. Nemerow ◽  
N. R. Cooper
2021 ◽  
Vol 49 (18) ◽  
pp. 10657-10676
Author(s):  
Evelyne Manet ◽  
Hélène Polvèche ◽  
Fabrice Mure ◽  
Paulina Mrozek-Gorska ◽  
Florian Roisné-Hamelin ◽  
...  

Abstract Epstein-Barr virus (EBV) is a human herpesvirus associated with human cancers worldwide. Ex vivo, the virus efficiently infects resting human B lymphocytes and induces their continuous proliferation. This process is accompanied by a global reprogramming of cellular gene transcription. However, very little is known on the impact of EBV infection on the regulation of alternative splicing, a pivotal mechanism that plays an essential role in cell fate determination and is often deregulated in cancer. In this study, we have developed a systematic time-resolved analysis of cellular mRNA splice variant expression during EBV infection of resting B lymphocytes. Our results reveal that major modifications of alternative splice variant expression appear as early as day 1 post-infection and suggest that splicing regulation provides—besides transcription—an additional mechanism of gene expression regulation at the onset of B cell activation and proliferation. We also report a role for the viral proteins, EBNA2 and EBNA-LP, in the modulation of specific alternative splicing events and reveal a previously unknown function for EBNA-LP—together with the RBM4 splicing factor—in the alternative splicing regulation of two important modulators of cell proliferation and apoptosis respectively, NUMB and BCL-X.


1999 ◽  
Vol 73 (2) ◽  
pp. 1555-1564 ◽  
Author(s):  
Glenda C. Faulkner ◽  
Scott R. Burrows ◽  
Rajiv Khanna ◽  
Denis J. Moss ◽  
A. Graham Bird ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) infects both B lymphocytes and squamous epithelial cells in vitro, but the cell type(s) required to establish primary and persistent infection in vivo has not been definitively elucidated. The aim of this study was to investigate a group of individuals who lack mature B lymphocytes due to the rare heritable disorder X-linked agammaglobulinemia in order to determine the role of the B cell in the infection process. The results show that none of these individuals harbored EBV in their blood or throat washings. Furthermore, no EBV-specific memory cytotoxic T lymphocytes were found, suggesting that they had not undergone infection in the past. In contrast, 50% of individuals were found to carry human herpesvirus 6, showing that they are infectible by another lymphotropic herpesvirus. These results add weight to the theory that B lymphocytes, and not oropharyngeal epithelial cells, may be required for primary infection with EBV.


1998 ◽  
Vol 72 (10) ◽  
pp. 8143-8149 ◽  
Author(s):  
Stefanie Kliche ◽  
Elisabeth Kremmer ◽  
Wolfgang Hammerschmidt ◽  
Ulrich Koszinowski ◽  
Jürgen Haas

ABSTRACT In patients with Kaposi’s sarcoma (KS), human herpesvirus 8 (HHV-8) can invariably be detected in KS tumor tissue and, at a lower frequency, in prostate tissue and peripheral blood B lymphocytes. Whereas the majority of KS spindle cells are latently infected by HHV-8, linear HHV-8 genomes characteristic for lytic infection are found predominantly in the peripheral blood cells of KS patients. In this study, we show that HHV-8 can stably infect B lymphocytes in vitro in the presence of Epstein-Barr virus (EBV). We were able to generate immortalized HHV-8+/EBV+ lymphoblastoid cell lines (LCLs) derived from peripheral blood mononuclear cells (PBMC) of EBV− and EBV+ donors. In HHV-8+/EBV+ LCLs, which have the phenotype of activated B lymphocytes (CD19+, surface immunoglobulin M, CD23+, CD30+, CD80+), HHV-8 was still present after more than 25 passages (more than 9 months of culture). Latent viral transcripts and proteins were present in nonstimulated HHV-8+/EBV+ LCLs. After induction by phorbol ester and n-butyrate, HHV-8+/EBV+ LCLs expressed lytic HHV-8 transcripts and proteins. Moreover, HHV-8 could be serially passaged from HHV-8+/EBV+ LCLs to fresh PBMC.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 285
Author(s):  
Xinle Cui ◽  
Zhouhong Cao ◽  
Yuriko Ishikawa ◽  
Sara Cui ◽  
Ken-Ichi Imadome ◽  
...  

Epstein–Barr virus (EBV) is the primary cause of infectious mononucleosis and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. EBV core fusion machinery envelope proteins gH/gL and gB coordinately mediate EBV fusion and entry into its target cells, B lymphocytes and epithelial cells, suggesting these proteins could induce antibodies that prevent EBV infection. We previously reported that the immunization of rabbits with recombinant EBV gH/gL or trimeric gB each induced markedly higher serum EBV-neutralizing titers for B lymphocytes than that of the leading EBV vaccine candidate gp350. In this study, we demonstrated that immunization of rabbits with EBV core fusion machinery proteins induced high titer EBV neutralizing antibodies for both B lymphocytes and epithelial cells, and EBV gH/gL in combination with EBV trimeric gB elicited strong synergistic EBV neutralizing activities. Furthermore, the immune sera from rabbits immunized with EBV gH/gL or trimeric gB demonstrated strong passive immune protection of humanized mice from lethal dose EBV challenge, partially or completely prevented death respectively, and markedly decreased the EBV load in peripheral blood of humanized mice. These data strongly suggest the combination of EBV core fusion machinery envelope proteins gH/gL and trimeric gB is a promising EBV prophylactic vaccine.


1994 ◽  
Vol 269 (29) ◽  
pp. 18743-18746 ◽  
Author(s):  
F.E. Maly ◽  
L.A. Quilliam ◽  
O. Dorseuil ◽  
C.J. Der ◽  
G.M. Bokoch

mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Lisa Grossman ◽  
Chris Chang ◽  
Joanne Dai ◽  
Pavel A. Nikitin ◽  
Dereje D. Jima ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out. Epstein-Barr virus (EBV), an oncogenic herpesvirus, infects and transforms primary B cells into immortal lymphoblastoid cell lines (LCLs), providing a model for EBV-mediated tumorigenesis. EBV transformation stimulates robust homotypic aggregation, indicating that EBV induces molecules that mediate cell-cell adhesion. We report that EBV potently induced expression of the adhesion molecule CD226, which is not normally expressed on B cells. We found that early after infection of primary B cells, EBV promoted an increase in CD226 mRNA and protein expression. CD226 levels increased further from early proliferating EBV-positive B cells to LCLs. We found that CD226 expression on B cells was independent of B-cell activation as CpG DNA failed to induce CD226 to the extent of EBV infection. CD226 expression was high in EBV-infected B cells expressing the latency III growth program, but low in EBV-negative and EBV latency I-infected B-lymphoma cell lines. We validated this correlation by demonstrating that the latency III characteristic EBV NF-κB activator, latent membrane protein 1 (LMP1), was sufficient for CD226 upregulation and that CD226 was more highly expressed in lymphomas with increased NF-κB activity. Finally, we found that CD226 was not important for LCL steady-state growth, survival in response to apoptotic stress, homotypic aggregation, or adhesion to activated endothelial cells. These findings collectively suggest that EBV induces expression of a cell adhesion molecule on primary B cells that may play a role in the tumor microenvironment of EBV-associated B-cell malignancies or facilitate adhesion in the establishment of latency in vivo. IMPORTANCE Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out.


2014 ◽  
Vol 58 (2-3) ◽  
pp. 268-276 ◽  
Author(s):  
Olivia L. Hatton ◽  
Aleishia Harris-Arnold ◽  
Steven Schaffert ◽  
Sheri M. Krams ◽  
Olivia M. Martinez

Sign in / Sign up

Export Citation Format

Share Document