cellular aggregation
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 20)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Author(s):  
David Choy Buentello ◽  
Lina Sophie Koch ◽  
Grissel Trujillo-de Santiago ◽  
Mario Moisés Alvarez ◽  
Kerensa Broersen

The use of organoids has become increasingly popular recently due to their self-organizing abilities, which facilitate developmental and disease modeling. Various methods have been described to create embryoid bodies (EBs) generated from embryonic or pluripotent stem cells but with varying levels of differentiation success and producing organoids of variable size. Commercial ultra-low attachment (ULA) V-bottom well plates are frequently used to generate EBs. These plates are relatively expensive and not as widely available as standard concave well plates. Here, we describe a cost-effective and low labor-intensive method that creates homogeneous EBs at high yield in standard V- and U-bottom well plates by applying an anti-adherence solution to reduce surface attachment, followed by centrifugation to enhance cellular aggregation. We also explore the effect of different seeding densities, in the range of 1 to 11 ×10 3 cells per well, for the fabrication of neuroepithelial EBs. Our results show that the use of V-bottom well plates briefly treated with anti-adherent solution (for 5 min at room temperature) consistently yields functional neural EBs in the range of seeding densities from 5 to 11×10 3 cells per well. A brief post-seeding centrifugation step further enhances EB establishment. EBs fabricated using centrifugation exhibited lower variability in their final size than their non-centrifuged counterparts, and centrifugation also improved EB yield. The span of conditions for reliable EB production is narrower in U-bottom wells than in V-bottom wells (i.e., seeding densities between 7×10 3 and 11×10 3 and using a centrifugation step). We show that EBs generated by the protocols introduced here successfully developed into neural organoids and expressed the relevant markers associated with their lineages


2021 ◽  
Vol 12 ◽  
Author(s):  
Mizuki Taguchi ◽  
Chikaya Tanaka ◽  
Shigeyuki Tsutsui ◽  
Osamu Nakamura

Echinoderms have a large coelomic cavity containing coelomocytes. When the coelomic fluid is removed from the cavity, the cells aggregate immediately. We found that a fraction or an extract of the intestine of the sea cucumber, Apostichopus japonicus, markedly accelerated cellular movement and aggregation on a glass slide, and this effect was clearly inhibited by galactose. We successfully purified the aggregation-promoting factor, a 16 kDa protein, from the intestine. TOF-MS analysis followed by de novo sequencing revealed that the protein is a C-type lectin. RNA-seq data and cDNA cloning demonstrated the factor to be a novel lectin, named AjGBCL, consisting of 158 aa residues in the mature form. Microscopic observation revealed that most of the aggregating cells moved toward aggregates and not to an intestinal fragment, suggesting that AjGBCL is not a chemoattractant but a cellular aggregation-inducing factor that may induce aggregates to release chemoattractant. We report, for the first time, an endogenous molecule that promotes coelomocyte aggregation in echinoderms.


2021 ◽  
Author(s):  
Karla C. Hernández Ramos ◽  
Edna Rodríguez-Sánchez ◽  
Juan Antonio Arias del Angel ◽  
Alejandro V. Arzola ◽  
Mariana Benítez ◽  
...  

ABSTRACTThe social soil-dwelling bacteria Myxococcus xanthus can form multicellular structures, known as fruiting bodies. Experiments in homogeneous environments have shown that this process is affected by the physico-chemical properties of the substrate, but they have largely neglected the role of complex topographies. We experimentally demonstrate that the topography alters single-cell motility and multicellular organization in M. xanthus. In topographies realized by randomly placing silica particles over agar plates, we observe that the cells’ interaction with particles drastically modifies the dynamics of cellular aggregation, leading to changes in the number, size and shape of the fruiting bodies, and even to arresting their formation in certain conditions. We further explore this type of cell-particle interaction in a minimal computational model. These results provide fundamental insights into how the environment topography influences the emergence of complex multicellular structures from single cells, which is a fundamental problem of biological, ecological and medical relevance.


2020 ◽  
Author(s):  
Philip H. Iffland ◽  
Mariah E. Everett ◽  
Katherine M. Cobb-Pitstick ◽  
Lauren E. Bowser ◽  
Allan E. Barnes ◽  
...  

AbstractNitrogen Permease Regulator Like 3 (NPRL3) variants are associated with malformations of cortical development (MCD) and epilepsy. We report a large (n=133) founder NPRL3 (c.349delG, p.Glu117LysFS) pedigree dating to 1727, with heterogeneous epilepsy and MCD phenotypes. Whole exome analysis in individuals with and without seizures in this cohort did not identify a genetic modifier to explain the variability in seizure phenotype. Then as a strategy to investigate the developmental effects of NPRL3 loss in human brain, we show that CRISPR/Cas9 Nprl3 knockout (KO) in Neuro2a cells (N2aC) in vitro causes mechanistic target of rapamycin (mTOR) pathway hyperactivation, cell soma enlargement, and excessive cellular aggregation. Amino acid starvation caused mTOR inhibition and cytoplasmic mTOR localization in wildtype cells, whereas following Nprl3 KO, mTOR remained inappropriately localized on the lysosome and activated, evidenced by persistent ribosomal S6 and 4E-BP1 phosphorylation, demonstrating that Nprl3 loss decouples mTOR activation from metabolic state. Nprl3 KO by in utero electroporation in fetal (E14) mouse cortex resulted in mTOR-dependent cortical dyslamination with ectopic neurons in subcortical white matter. EEG recordings of these mice showed hyperexcitability in the electroporated hemisphere. NPRL3 variants are linked to a highly variable clinical phenotype likely as a consequence of mTOR-dependent effects on cell structure, cortical development, and network organization.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241019
Author(s):  
Wee-Han Poh ◽  
Jianqing Lin ◽  
Brendan Colley ◽  
Nicolai Müller ◽  
Boon Chong Goh ◽  
...  

The critical role of bacterial biofilms in chronic human infections calls for novel anti-biofilm strategies targeting the regulation of biofilm development. However, the regulation of biofilm development is very complex and can include multiple, highly interconnected signal transduction/response pathways, which are incompletely understood. We demonstrated previously that in the opportunistic, human pathogen P. aeruginosa, the PP2C-like protein phosphatase SiaA and the di-guanylate cyclase SiaD control the formation of macroscopic cellular aggregates, a type of suspended biofilms, in response to surfactant stress. In this study, we demonstrate that the SiaABC proteins represent a signal response pathway that functions through a partner switch mechanism to control biofilm formation. We also demonstrate that SiaABCD functionality is dependent on carbon substrate availability for a variety of substrates, and that upon carbon starvation, SiaB mutants show impaired dispersal, in particular with the primary fermentation product ethanol. This suggests that carbon availability is at least one of the key environmental cues integrated by the SiaABCD system. Further, our biochemical, physiological and crystallographic data reveals that the phosphatase SiaA and its kinase counterpart SiaB balance the phosphorylation status of their target protein SiaC at threonine 68 (T68). Crystallographic analysis of the SiaA-PP2C domain shows that SiaA is present as a dimer. Dynamic modelling of SiaA with SiaC suggested that SiaA interacts strongly with phosphorylated SiaC and dissociates rapidly upon dephosphorylation of SiaC. Further, we show that the known phosphatase inhibitor fumonisin inhibits SiaA mediated phosphatase activity in vitro. In conclusion, the present work improves our understanding of how P. aeuruginosa integrates specific environmental conditions, such as carbon availability and surfactant stress, to regulate cellular aggregation and biofilm formation. With the biochemical and structural characterization of SiaA, initial data on the catalytic inhibition of SiaA, and the interaction between SiaA and SiaC, our study identifies promising targets for the development of biofilm-interference drugs to combat infections of this aggressive opportunistic pathogen.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5145 ◽  
Author(s):  
Dmitriy N. Shurpik ◽  
Pavel L. Padnya ◽  
Ivan I. Stoikov ◽  
Peter J. Cragg

Calixarenes and related macrocycles have been shown to have antimicrobial effects since the 1950s. This review highlights the antimicrobial properties of almost 200 calixarenes, resorcinarenes, and pillararenes acting as prodrugs, drug delivery agents, and inhibitors of biofilm formation. A particularly important development in recent years has been the use of macrocycles with substituents terminating in sugars as biofilm inhibitors through their interactions with lectins. Although many examples exist where calixarenes encapsulate, or incorporate, antimicrobial drugs, one of the main factors to emerge is the ability of functionalized macrocycles to engage in multivalent interactions with proteins, and thus inhibit cellular aggregation.


Author(s):  
LIN CHEN ◽  
FANZE KONG ◽  
QI WANG

We consider a Keller–Segel model that describes the cellular chemotactic movement away from repulsive chemical subject to logarithmic sensitivity function over a confined region in ${{\mathbb{R}}^n},\,n \le 2$ . This sensitivity function describes the empirically tested Weber–Fecher’s law of living organism’s perception of a physical stimulus. We prove that, regardless of chemotaxis strength and initial data, this repulsive system is globally well-posed and the constant solution is the global and exponential in time attractor. Our results confirm the ‘folklore’ that chemorepulsion inhibits the formation of non-trivial steady states within the logarithmic chemotaxis model, hence preventing cellular aggregation therein.


Author(s):  
Andreas Schmitt ◽  
Helmut Hirt ◽  
Michael A. Järvå ◽  
Wei-Sheng Sun ◽  
Josy ter Beek ◽  
...  

AbstractHorizontal gene transfer between Gram-positive bacteria leads to a rapid spread of virulence factors and antibiotic resistance. This transfer is often facilitated via Type 4 Secretion Systems (T4SS), which frequently are encoded on conjugative plasmids. However, donor cells that already contain a particular conjugative plasmid resist acquisition of a 2nd copy of said plasmid. They utilize different mechanisms, including surface exclusion for this purpose. Enterococcus faecalis PrgA, encoded by the conjugative plasmid pCF10, is a surface protein that has been implicated to play a role in both virulence and surface exclusion, but the mechanism by which this is achieved has not been fully explained. Here, we report the structure of full-length PrgA, which shows that PrgA protrudes far out from the cell wall (approximately 40 nm), where it presents a protease domain. In vivo experiments show that PrgA provides a physical barrier to cellular adhesion, thereby reducing cellular aggregation. This function of PrgA contributes to surface exclusion, reducing the uptake of its cognate plasmid by approximately one order of magnitude. Using variants of PrgA with mutations in the catalytic site we show that the surface exclusion effect is dependent on the activity of the protease domain of PrgA. In silico analysis suggest that PrgA can interact with another enterococcal adhesin, PrgB, and that these two proteins have co-evolved. PrgB is a strong virulence factor, and PrgA is involved in post-translational processing of PrgB. Finally, competition mating experiments show that PrgA provides a significant fitness advantage to plasmid-carrying cells.


Sign in / Sign up

Export Citation Format

Share Document