scholarly journals Production of antibody associated with non-A, non-B hepatitis in a chimpanzee lymphoblastoid cell line established by in vitro transformation with Epstein-Barr virus.

1985 ◽  
Vol 82 (7) ◽  
pp. 2138-2142 ◽  
Author(s):  
Y. K. Shimizu ◽  
M. Oomura ◽  
K. Abe ◽  
M. Uno ◽  
E. Yamada ◽  
...  
2001 ◽  
Vol 75 (18) ◽  
pp. 8556-8568 ◽  
Author(s):  
Wonkeun Lee ◽  
Yoon-Ha Hwang ◽  
Suk-Kyeong Lee ◽  
Chitra Subramanian ◽  
Erle S. Robertson

ABSTRACT Epstein-Barr virus (EBV) is associated with human cancers, including nasopharyngeal carcinoma, Burkitt's lymphoma, gastric carcinoma and, somewhat controversially, breast carcinoma. EBV infects and efficiently transforms human primary B lymphocytes in vitro. A number of EBV-encoded genes are critical for EBV-mediated transformation of human B lymphocytes. In this study we show that an EBV-infected lymphoblastoid cell line obtained from the spontaneous outgrowth of B cells from a leukemia patient contains a deletion, which involves a region of approximately 16 kbp. This deletion encodes major EBV genes involved in both infection and transformation of human primary B lymphocytes and includes the glycoprotein gp350, the entire open reading frame of EBNA3A, and the amino-terminal region of EBNA3B. A fusion protein created by this deletion, which lies between the BMRF1 early antigen and the EBNA3B latent antigen, is truncated immediately downstream of the junction 21 amino acids into the region of the EBNA3B sequence, which is out of frame with respect to the EBNA3B protein sequence, and indicates that EBNA3B is not expressed. The fusion is from EBV coordinate 80299 within the BMRF1 sequence to coordinate 90998 in the EBNA3B sequence. Additionally, we have shown that there is no detectable induction in viral replication observed when SNU-265 is treated with phorbol esters, and no transformants were detected when supernatant is used to infect primary B lymphocytes after 8 weeks in culture. Therefore, we have identified an EBV genome with a major deletion in critical genes involved in mediating EBV infection and the transformation of human primary B lymphocytes that is incompetent for replication of this naturally occurring EBV isolate.


2009 ◽  
Vol 83 (13) ◽  
pp. 6909-6916 ◽  
Author(s):  
Gareth Brady ◽  
Hannah J. Whiteman ◽  
Lindsay C. Spender ◽  
Paul J. Farrell

ABSTRACT Cross-regulation of RUNX1 expression by RUNX3 plays a critical role in regulating proliferation of human B cells infected with Epstein-Barr virus (EBV). When EBV infection induces RUNX3, the consequent reduction in RUNX1 levels is required for the ensuing cell proliferation because forced expression of RUNX1 in an EBV lymphoblastoid cell line prevented cell proliferation. The TEL-RUNX1 fusion gene from acute B-lymphocytic leukemia retains almost all of the RUNX1 sequence but does not prevent B-cell proliferation in the same assay. B-cell maturation antigen (BCMA) was found to be induced by conditionally expressed RUNX3 in a lymphoma cell line. Chromatin immunoprecipitation assays confirmed that RUNX3 binds to the RUNX1 promoter in a lymphoblastoid cell line and a Burkitt's lymphoma cell line. The TLE binding VWRPY sequence from the C terminus of RUNX3 was found to be required for repression of the RUNX1 P1 promoter in a B-lymphoma cell line. The mechanism of repression in B-cell lines most likely involves recruitment of corepressor TLE3 or TLE4 to the RUNX1 promoter. The results demonstrate the importance of RUNX3-mediated repression of RUNX1 for EBV-driven B-cell proliferation and identify functional differences between human RUNX family proteins.


Sign in / Sign up

Export Citation Format

Share Document