scholarly journals Differentiation of renal beta-intercalated cells to alpha-intercalated and principal cells in culture.

1992 ◽  
Vol 89 (12) ◽  
pp. 5487-5491 ◽  
Author(s):  
G. Fejes-Toth ◽  
A. Naray-Fejes-Toth
2013 ◽  
Vol 305 (6) ◽  
pp. F919-F929 ◽  
Author(s):  
Francesco Trepiccione ◽  
Giovambattista Capasso ◽  
Søren Nielsen ◽  
Birgitte Mønster Christensen

The cellular morphology of the collecting duct is altered by chronic lithium treatment. We have previously shown that lithium increases the fraction of type-A intercalated cells and lowers the fraction of principal cells along the collecting duct. Moreover, type-A intercalated cells acquire a long-row distribution pattern along the tubules. In the present study, we show that these morphological changes reverse progressively after discontinuation of lithium and finally disappear after 19 days from lithium suspension. In this time frame we have identified for the first time, in vivo, a novel cellular type positive for both intercalated and principal cells functional markers, as recognized by colabeling with H+-ATPase/aquaporin-4 (AQP4) and anion exchanger-1 (AE-1)/AQP2 and Foxi1/AQP4. This cell type is mainly present after 6 days of lithium washout, and it disappears in parallel with the long-row pattern of the type-A intercalated cells. It usually localizes either in the middle or at the edge of the long-row pattern. Its ultrastructure resembles the intercalated cells as shown both by differential interference contrast and by electron microscopy. The time course of appearance, the localization along the collecting duct, and the ultrastructure suggest that the cells double labeled for principal and intercalated cells markers could represent a transition element driving the conversion of intercalated cells into principal cells.


2016 ◽  
Vol 311 (5) ◽  
pp. F901-F906 ◽  
Author(s):  
Francesco Trepiccione ◽  
Christelle Soukaseum ◽  
Anna Iervolino ◽  
Federica Petrillo ◽  
Miriam Zacchia ◽  
...  

The distal nephron is a heterogeneous part of the nephron composed by six different cell types, forming the epithelium of the distal convoluted (DCT), connecting, and collecting duct. To dissect the function of these cells, knockout models specific for their unique cell marker have been created. However, since this part of the nephron develops at the border between the ureteric bud and the metanephric mesenchyme, the specificity of the single cell markers has been recently questioned. Here, by mapping the fate of the aquaporin 2 (AQP2) and Na+-Cl−cotransporter (NCC)-positive cells using transgenic mouse lines expressing the yellow fluorescent protein fluorescent marker, we showed that the origin of the distal nephron is extremely composite. Indeed, AQP2-expressing precursor results give rise not only to the principal cells, but also to some of the A- and B-type intercalated cells and even to cells of the DCT. On the other hand, some principal cells and B-type intercalated cells can develop from NCC-expressing precursors. In conclusion, these results demonstrate that the origin of different cell types in the distal nephron is not as clearly defined as originally thought. Importantly, they highlight the fact that knocking out a gene encoding for a selective functional marker in the adult does not guarantee cell specificity during the overall kidney development. Tools allowing not only cell-specific but also time-controlled recombination will be useful in this sense.


1991 ◽  
Vol 260 (4) ◽  
pp. F498-F505
Author(s):  
C. L. Emmons ◽  
K. Matsuzaki ◽  
J. B. Stokes ◽  
V. L. Schuster

The rabbit cortical collecting duct (CCD) consists of three major cell types: principal cells transport K+, beta-intercalated cells absorb Cl-, and alpha-intercalated cells secrete H+. We used functional and histological methods to assess axial distribution of these cell types along rabbit CCD. In perfused CCDs, lumen-to-bath Rb+ rate coefficient (an index of principal cell K+ transport) was not different in tubules from outer cortex (1 mm from renal surface) compared with those from inner cortex (2 mm from renal surface), suggesting that principal cell function is homogeneous along the CCD. In contrast, Cl- rate coefficient (a measure of beta-intercalated cell function) was twice as high in CCDs from outer compared with inner cortex, suggesting heterogeneity of beta-intercalated cells along the CCD. To further investigate these regional differences, we fixed and embedded kidneys and identified three cell types in CCD cross sections using carbonic anhydrase staining and peanut lectin binding. Comparing tubule cross sections from outer with those from inner cortex, we found no axial difference in the fraction of cells that were either principal cells (64%) or total (lectin binding and nonlectin binding) intercalated cells (36%). However, the lectin-binding intercalated cell subset was significantly increased in outer compared with inner cortex. We conclude that there is not heterogeneity of principal cells along the rabbit CCD; however, beta-cell number and function are increased in outer CCD. Collecting duct heterogeneity begins within the cortical segment.


1995 ◽  
Vol 269 (6) ◽  
pp. F761-F774 ◽  
Author(s):  
S. Breton ◽  
S. L. Alper ◽  
S. L. Gluck ◽  
W. S. Sly ◽  
J. E. Barker ◽  
...  

The kidneys of mice (CAR2-null mice) that are genetically devoid of carbonic anhydrase type II (CAII) were screened by immunocytochemistry with antibodies that distinguish intercalated and principal cells. Immunofluorescent localization of the anion exchanger AE1 and of the 56-kDa subunit of the vacuolar H(+)-adenosinetriphosphatase (H(+)-ATPase) was used to identify intercalated cells, while the AQP2 water channel was used as a specific marker for principal cells of the collecting duct. The CAII deficiency of the CAR2-null mice was first confirmed by the absence of immunofluorescent staining of kidney sections exposed to an anti-CAII antibody. Cells positive for AE1 and H(+)-ATPase were common in all collecting duct regions in normal mice but were virtually absent from the inner stripe of the outer medulla and the inner medulla of CAR2-null mice. The number of positive cells was also reduced threefold in the cortical collecting duct of CAR2-null animals compared with normal mice. In parallel, the percentage of AQP2-positive cells was correspondingly increased in the collecting tubules of CAII-deficient mice, whereas the total number of cells per tubule remained unchanged. These results suggest that intercalated cells are severely depleted and are replaced by principal cells in CAII-deficient mice. Quantitative analysis and double staining showed that, in the cortex, both type A and type B intercalated cells are equally affected. Elucidation of the mechanism(s) responsible for this phenotype will be of importance in understanding the origin and development of intercalated cells in the kidney.


2001 ◽  
Vol 281 (4) ◽  
pp. F763-F768 ◽  
Author(s):  
Jeffrey A. Kraut ◽  
Kerstin G. Helander ◽  
Herbert F. Helander ◽  
Ngozi D. Iroezi ◽  
Elizabeth A. Marcus ◽  
...  

An H+-K+-ATPase contributes to hydrogen secretion and potassium reabsorption by the rat and rabbit collecting ducts. Transport of these ions appears to be accomplished by one or both of two isoforms of the H+-K+-ATPase, HKα1 and HKα2, because both isoforms are found in the collecting ducts and transport of hydrogen and potassium is attenuated by exposure to inhibitors of these transport proteins. To evaluate whether an H+-K+-ATPase is present in the human kidney, immunohistochemical studies were performed using normal human renal tissue probed with antibodies directed against epitopes of three of the known isoforms of the H+-K+-ATPase, HKα1, HKα2, and HKα4, and the V-type H+-ATPase. Cortical and medullary tissue probed with antibodies against HKα1 showed cytoplasmic staining of intercalated cells that was less intense than that observed in the parietal cells of normal rat stomach stained with the same antibody. Also, weak immunoreactivity was detected in principal cells of the human collecting ducts. Cortical and medullary tissue probed with antibodies directed against HKα4 revealed weak, diffuse staining of intercalated cells of the collecting ducts and occasional light staining of principal cells. Cortical and medullary tissue probed with antibodies directed against the H+-ATPase revealed staining of intercalated cells of the collecting ducts and some cells of the proximal convoluted tubules. By contrast, no discernible staining was noted with the use of the antibody against HKα2. These data indicate that HKα1 and HKα4 are present in the collecting ducts of the human kidney. In this location, these isoforms might contribute to hydrogen and potassium transport by the kidney.


1986 ◽  
Vol 250 (1) ◽  
pp. F1-F15 ◽  
Author(s):  
K. M. Madsen ◽  
C. C. Tisher

The distal tubule, which includes the thick ascending limb (TAL), the macula densa, and the distal convoluted tubule (DCT), and the collecting duct are structurally heterogeneous, thus reflecting the functional heterogeneity that is also present. As the TAL ascends from medulla to cortex, the surface area of the apical plasma membrane increases while that of the basolateral membrane decreases. The structure of the DCT resembles that of the medullary TAL. An excellent correlation exists between structure, Na-K-ATPase activity, and NaCl reabsorptive capacity in the distal tubule. The collecting duct is subdivided into the initial collecting tubule (ICT), and cortical (CCD), outer medullary (OMCD), and inner medullary (IMCD) collecting ducts. Between the distal tubule and the collecting duct is a transition region termed the connecting segment or connecting tubule (CNT). Considerable structural heterogeneity exists along the collecting duct within the two major cell populations, the intercalated cells and the principal cells. In the CNT, the ICT, and the CCD, potassium loading and mineralocorticoids stimulate Na-K-ATPase activity and cause proliferation of the basolateral membrane of CNT cells and principal cells, thus identifying the cells responsible for mineralocorticoid-stimulated potassium secretion in these regions. Finally, at least two morphologically distinct populations of intercalated cells exist, types A and B. In the rat, type A predominates in the CNT and the OMCD and is believed to be responsible for H+ secretion, at least in the OMCD. Type B predominates in the CCD, where it may be involved in bicarbonate secretion.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Jonathan Berrout ◽  
Min Jin ◽  
Mykola Mamenko ◽  
Oleg L Zaika ◽  
Oleh Pochynyuk ◽  
...  

1987 ◽  
Vol 252 (3) ◽  
pp. F412-F422
Author(s):  
P. Poujeol ◽  
P. Ronco ◽  
M. Tauc ◽  
M. Geniteau ◽  
F. Chatelet ◽  
...  

To obtain monoclonal antibodies (MAB) specific for the different cell types of distal and collecting tubules, BALB/c mice were immunized with cell suspensions highly enriched in cells from the distal segments of the rabbit nephron. Nine MAB were selected and cloned. Four groups could be identified on the basis of double-labeling immunofluorescence (IF) on frozen kidney sections and on microdissected tubules. In addition, binding specificity at the cellular level was studied by immunoelectronmicroscopy (IEM) for selected MAB. A single MAB (group 1) was specific for distal bright cells and a subpopulation of cortical ascending limb cells. Six MAB (group 2) reacted with connecting and collecting tubules. Five of these (group 2A) had similar binding patterns and reacted identically with the two tubular segments. The MAB studied by IEM was specific for connecting and principal cells. One antibody (group 2B) reacted with only a fraction of the cells associated with the connecting tubule (CNT), but with all cells of the cortical collecting tubule (CCT). By IEM, this antibody was found to be specific for intercalated cells in CNT and bound both principal and intercalated cells of the CCT. Two MAB (group 3) reacted with antigen(s) expressed by the various terminal segments of renal tubule. MAB of groups 1 and 2A, which define distal bright cells and connecting-principal cells from the CNT-CCT, respectively, were used for cell fractionation experiments. Heterogeneous rabbit cortical cells were first incubated with the selected MAB. MAB-bearing renal cells were separated on plastic dishes previously coated with an affinity-purified goat anti-mouse immunoglobulin. Using these procedures it was possible to obtain highly purified subpopulations of distal, bright, or connecting-principal cells.


2000 ◽  
Vol 279 (6) ◽  
pp. F1053-F1059 ◽  
Author(s):  
Nicolas Laroche-Joubert ◽  
Sophie Marsy ◽  
Alain Doucet

Rat collecting ducts exhibit type I or type III K+-ATPase activities when animals are fed a normal (NK) or a K+-depleted diet (LK). This study aimed at determining functionally the cell origin of these two K+-ATPases. For this purpose, we searched for an effect on K+-ATPases of hormones that trigger cAMP production in a cell-specific fashion. The effects of 1-deamino-8-d-arginine vasopressin (dD-AVP), calcitonin, and isoproterenol in principal cells, α-intercalated cells, and β-intercalated cells of cortical collecting duct (CCD), respectively, and of dD-AVP and glucagon in principal and α-intercalated cells of outer medullary collecting duct (OMCD), respectively, were examined. In CCDs, K+-ATPase was stimulated by calcitonin and isoproterenol in NK rats (type I K+-ATPase) and by dD-AVP in LK rats (type III K+-ATPase). In OMCDs, dD-AVP and glucagon stimulated type III but not type I K+-ATPase. These hormone effects were mimicked by the cAMP-permeant analog dibutyryl-cAMP. In conclusion, in NK rats, cAMP stimulates type I K+-ATPase activity in α- and β-intercalated CCD cells, whereas in LK rats it stimulates type III K+-ATPase in principal cells of both CCD and OMCD and in OMCD intercalated cells.


1998 ◽  
Vol 111 (24) ◽  
pp. 3633-3643 ◽  
Author(s):  
A. Lueck ◽  
D. Brown ◽  
D.J. Kwiatkowski

To understand the distinct functions of the closely related actin-severing proteins adseverin and gelsolin, we examined the expression of these proteins in detail during mouse and human development using a new highly sensitive and specific set of antibody reagents. Immunoblot analysis demonstrated that adseverin was highly expressed in mouse kidney and intestine at all stages of development and in human fetal and adult kidney. In contrast and as reported previously, gelsolin was expressed much more widely in both murine and human tissues. Immunohistochemistry on murine kidney sections revealed a predominantly differential localization of adseverin and gelsolin. Adseverin was expressed in peripolar cells, thin limbs, thick ascending limbs, and principal cells of cortical and medullary collecting ducts where it was diffusely localized in the cytoplasm. Gelsolin was expressed in the distal convoluted tubule, intercalated cells and principal cells of cortical and medullary collecting ducts, and in ureter. In the distal convoluted tubule, gelsolin showed a diffuse distribution and in principal cells of collecting ducts a localization at the basolateral pole. In intercalated cells, gelsolin localization was heterogeneous, either at the apical pole or diffusely in the cytoplasm. In human fetal and adult kidney, adseverin was expressed only in collecting ducts whereas gelsolin was expressed in thick ascending limbs and collecting ducts. In mouse and human intestine adseverin was expressed in enterocytes with a gradient of increasing expression from the duodenum to the colon, and from the crypt to the villus. The observations indicate high level expression of adseverin in specific cells of the kidney and colon, and suggest a previously unrecognized function of adseverin in epithelial cell function.


Sign in / Sign up

Export Citation Format

Share Document