Depletion of intercalated cells from collecting ducts of carbonic anhydrase II-deficient (CAR2 null) mice

1995 ◽  
Vol 269 (6) ◽  
pp. F761-F774 ◽  
Author(s):  
S. Breton ◽  
S. L. Alper ◽  
S. L. Gluck ◽  
W. S. Sly ◽  
J. E. Barker ◽  
...  

The kidneys of mice (CAR2-null mice) that are genetically devoid of carbonic anhydrase type II (CAII) were screened by immunocytochemistry with antibodies that distinguish intercalated and principal cells. Immunofluorescent localization of the anion exchanger AE1 and of the 56-kDa subunit of the vacuolar H(+)-adenosinetriphosphatase (H(+)-ATPase) was used to identify intercalated cells, while the AQP2 water channel was used as a specific marker for principal cells of the collecting duct. The CAII deficiency of the CAR2-null mice was first confirmed by the absence of immunofluorescent staining of kidney sections exposed to an anti-CAII antibody. Cells positive for AE1 and H(+)-ATPase were common in all collecting duct regions in normal mice but were virtually absent from the inner stripe of the outer medulla and the inner medulla of CAR2-null mice. The number of positive cells was also reduced threefold in the cortical collecting duct of CAR2-null animals compared with normal mice. In parallel, the percentage of AQP2-positive cells was correspondingly increased in the collecting tubules of CAII-deficient mice, whereas the total number of cells per tubule remained unchanged. These results suggest that intercalated cells are severely depleted and are replaced by principal cells in CAII-deficient mice. Quantitative analysis and double staining showed that, in the cortex, both type A and type B intercalated cells are equally affected. Elucidation of the mechanism(s) responsible for this phenotype will be of importance in understanding the origin and development of intercalated cells in the kidney.

2000 ◽  
Vol 279 (1) ◽  
pp. F195-F202 ◽  
Author(s):  
Randi B. Silver ◽  
Sylvie Breton ◽  
Dennis Brown

Intercalated cells (ICs) from kidney collecting ducts contain proton-transporting ATPases (H+-ATPases) whose plasma membrane expression is regulated under a variety of conditions. It has been shown that net proton secretion occurs in the distal nephron from chronically K+-depleted rats and that upregulation of tubular H+- ATPase is involved in this process. However, regulation of this protein at the level of individual cells has not so far been examined. In the present study, H+-ATPase activity was determined in individually identified ICs from control and chronically K+-depleted rats (9–14 days on a low-K+ diet) by monitoring K+- and Na+-independent H+ extrusion rates after an acute acid load. Split-open rat cortical collecting tubules were loaded with the intracellular pH (pHi) indicator 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and pHiwas determined by using ratiometric fluorescence imaging. The rate of pHi recovery in ICs in response to an acute acid load, a measure of plasma membrane H+-ATPase activity, was increased after K+ depletion to almost three times that of controls. Furthermore, the lag time before the start of pHirecovery after the cells were maximally acidified fell from 93.5 ± 13.7 s in controls to 24.5 ± 2.1 s in K+-depleted rats. In all ICs tested, Na+- and K+-independent pHi recovery was abolished in the presence of bafilomycin (100 nM), an inhibitor of the H+-ATPase. Analysis of the cell-to-cell variability in the rate of pHi recovery reveals a change in the distribution of membrane-bound proton pumps in the IC population of cortical collecting duct from K+-depleted rats. Immunocytochemical analysis of collecting ducts from control and K+-depleted rats showed that K+-depletion increased the number of ICs with tight apical H+ATPase staining and decreased the number of cells with diffuse or basolateral H+-ATPase staining. Taken together, these data indicate that chronic K+ depletion induces a marked increase in plasma membrane H+ATPase activity in individual ICs.


1991 ◽  
Vol 260 (4) ◽  
pp. F498-F505
Author(s):  
C. L. Emmons ◽  
K. Matsuzaki ◽  
J. B. Stokes ◽  
V. L. Schuster

The rabbit cortical collecting duct (CCD) consists of three major cell types: principal cells transport K+, beta-intercalated cells absorb Cl-, and alpha-intercalated cells secrete H+. We used functional and histological methods to assess axial distribution of these cell types along rabbit CCD. In perfused CCDs, lumen-to-bath Rb+ rate coefficient (an index of principal cell K+ transport) was not different in tubules from outer cortex (1 mm from renal surface) compared with those from inner cortex (2 mm from renal surface), suggesting that principal cell function is homogeneous along the CCD. In contrast, Cl- rate coefficient (a measure of beta-intercalated cell function) was twice as high in CCDs from outer compared with inner cortex, suggesting heterogeneity of beta-intercalated cells along the CCD. To further investigate these regional differences, we fixed and embedded kidneys and identified three cell types in CCD cross sections using carbonic anhydrase staining and peanut lectin binding. Comparing tubule cross sections from outer with those from inner cortex, we found no axial difference in the fraction of cells that were either principal cells (64%) or total (lectin binding and nonlectin binding) intercalated cells (36%). However, the lectin-binding intercalated cell subset was significantly increased in outer compared with inner cortex. We conclude that there is not heterogeneity of principal cells along the rabbit CCD; however, beta-cell number and function are increased in outer CCD. Collecting duct heterogeneity begins within the cortical segment.


2000 ◽  
Vol 279 (6) ◽  
pp. F1053-F1059 ◽  
Author(s):  
Nicolas Laroche-Joubert ◽  
Sophie Marsy ◽  
Alain Doucet

Rat collecting ducts exhibit type I or type III K+-ATPase activities when animals are fed a normal (NK) or a K+-depleted diet (LK). This study aimed at determining functionally the cell origin of these two K+-ATPases. For this purpose, we searched for an effect on K+-ATPases of hormones that trigger cAMP production in a cell-specific fashion. The effects of 1-deamino-8-d-arginine vasopressin (dD-AVP), calcitonin, and isoproterenol in principal cells, α-intercalated cells, and β-intercalated cells of cortical collecting duct (CCD), respectively, and of dD-AVP and glucagon in principal and α-intercalated cells of outer medullary collecting duct (OMCD), respectively, were examined. In CCDs, K+-ATPase was stimulated by calcitonin and isoproterenol in NK rats (type I K+-ATPase) and by dD-AVP in LK rats (type III K+-ATPase). In OMCDs, dD-AVP and glucagon stimulated type III but not type I K+-ATPase. These hormone effects were mimicked by the cAMP-permeant analog dibutyryl-cAMP. In conclusion, in NK rats, cAMP stimulates type I K+-ATPase activity in α- and β-intercalated CCD cells, whereas in LK rats it stimulates type III K+-ATPase in principal cells of both CCD and OMCD and in OMCD intercalated cells.


1994 ◽  
Vol 267 (6) ◽  
pp. F987-F997 ◽  
Author(s):  
T. Matsumoto ◽  
C. A. Winkler ◽  
L. P. Brion ◽  
G. J. Schwartz

The mesonephric kidney, precursor to the metanephric kidney, comprises 30-50 nephrons, each with a glomerulus and proximal, distal, and collecting tubules. Although two different cell types have been identified in the mesonephric collecting tubule, no relationship to cells of the metanephric collecting duct has been established. To characterize expression of some of the acid-base-related proteins, we assayed for carbonic anhydrase (CA) activity and performed immunocytochemistry in mesonephroi from 15- to 20-day-old fetal rabbits. From total RNA, we detected expression of CA II and CA IV mRNA. Microdissected proximal and collecting tubules abundantly expressed both CA II and CA IV, at least to the extent observed in mature metanephric proximal tubules and collecting ducts. Histochemistry confirmed the expression of CA activity in these segments; in the collecting tubule, 28% of the collecting tubule cells were CA rich. Most CA-rich cells showed apical H(+)-ATPase and basolateral band 3 anion exchanger staining consistent with the findings in mature H(+)-secreting (alpha) intercalated cells of the metanephric collecting duct. CA-negative cells could be labeled with an antibody that identifies mature metanephric principal cells. Thus the mesonephric collecting tubule has many cells resembling mature alpha-intercalated cells and a majority of cells resembling principal cells. The similarity to the metanephric collecting duct suggests that the lineages of metanephric alpha-intercalated and principal cells may be closely related to those of the mesonephros.


1995 ◽  
Vol 269 (4) ◽  
pp. F545-F550 ◽  
Author(s):  
K. P. Yip ◽  
I. Kurtz

The cortical collecting duct (CCD) is an important site for NH3 secretion in mammalian nephron. However, given the cellular heterogeneity of this epithelium, the transcellular sites for NH3 secretion are unknown. In the present study, a dual-excitation confocal microscope was designed and optimized to have sufficient temporal resolution to measure the permeability of ammonia (PNH3) across the basolateral and apical membrane of principal cells (PCs) and intercalated cells (ICs) in perfused rabbit CCDs. The rate of cellular NH3 influx was calculated from the time course of increase in intracellular pH (pHi), measured with 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein after 20 mM NH4Cl was added to the bath or luminal perfusate. The time course of increase in pHi was calculated from 488/442 image pairs stored at a rate of 4 Hz. The apparent basolateral and apical PNH3 values of PCs were 36 +/- 5 and 113 +/- 11 microns/s, respectively. The values were 5.0 +/- 0.7 and 34 +/- 3 microns/s after membrane folding correction. The apparent basolateral and apical PNH3 values of ICs were 38 +/- 6 and 132 +/- 15 microns/s. Corrected for membrane folding, the values were 9.0 +/- 1.0 and 47 +/- 5 microns/s, respectively. The results demonstrate that the apical surface was more permeable than the basolateral surface in both cell types. In addition, ICs were more permeable to NH3 than PCs across both membranes. The transcellular PNH3 of PCs and ICs were 27.3 and 29.5 microns/s, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


2017 ◽  
Vol 313 (6) ◽  
pp. F1254-F1263 ◽  
Author(s):  
Aurélie Edwards ◽  
Gilles Crambert

The cortical collecting duct (CCD) forms part of the aldosterone-sensitive distal nephron and plays an essential role in maintaining the NaCl balance and acid-base status. The CCD epithelium comprises principal cells as well as different types of intercalated cells. Until recently, transcellular Na+ transport was thought to be restricted to principal cells, whereas (acid-secreting) type A and (bicarbonate-secreting) type B intercalated cells were associated with the regulation of acid-base homeostasis. This review describes how this traditional view has been upended by several discoveries in the past decade. A series of studies has shown that type B intercalated cells can mediate electroneutral NaCl reabsorption by a mechanism involving Na+-dependent and Na+-independent Cl−/[Formula: see text] exchange, and that is energetically driven by basolateral vacuolar H+-ATPase pumps. Other research indicates that type A intercalated cells can mediate NaCl secretion, through a bumetanide-sensitive pathway that is energized by apical H+,K+-ATPase type 2 pumps operating as Na+/K+ exchangers. We also review recent findings on the contribution of the paracellular route to NaCl transport in the CCD. Last, we describe cross-talk processes, by which one CCD cell type impacts Na+/Cl− transport in another cell type. The mechanisms that have been identified to date demonstrate clearly the interdependence of NaCl and acid-base transport systems in the CCD. They also highlight the remarkable versatility of this nephron segment.


1992 ◽  
Vol 40 (11) ◽  
pp. 1665-1673 ◽  
Author(s):  
Y Ridderstråle ◽  
P J Wistrand ◽  
R E Tashian

Carbonic anhydrase II-deficient mice offer a possibility to study the localization along the nephron of membrane-associated carbonic anhydrase (CA) activity without interference from the cytoplasmic enzyme. We studied the localization of CA in kidneys from CA II-deficient and control mice by immunocytochemistry (CA II) and histochemistry. Cytoplasmic staining was found in convoluted proximal tubule, thick limb of Henle, and principal and intercalated cells of collecting duct in the control animals but was absent in the CA II-deficient mice. In cells with cytoplasmic staining the cell nuclei were stained. Intense histochemical activity was associated with apical and basolateral membranes of convoluted proximal tubule, first part of thin limb, thick limb, and basolateral membranes of late distal tubule. In collecting ducts of control animals, the basolateral cell membranes of intercalated cells were the only clearly stained membranes. In CA II-deficient animals one type of intercalated cell was stained most intensely at the apical membranes and another only at the basolateral. We suggest that the former corresponds to Type A intercalated cells secreting H+ ions to the luminal side and the latter to Type B cells secreting H+ ions to the basolateral side.


2003 ◽  
Vol 284 (2) ◽  
pp. F323-F337 ◽  
Author(s):  
Jill W. Verlander ◽  
R. Tyler Miller ◽  
Amy E. Frank ◽  
Ines E. Royaux ◽  
Young-Hee Kim ◽  
...  

Ammonia is both produced and transported by renal epithelial cells, and it regulates renal ion transport. Recent studies have identified a family of putative ammonium transporters; mRNA for two members of this family, Rh B-glycoprotein (RhBG) and Rh C-glycoprotein (RhCG), is expressed in the kidney. The purpose of this study was to determine the cellular location of RhBG and RhCG protein in the mouse kidney. We generated RhBG- and RhCG-specific anti-peptide antibodies. Immunoblot analysis confirmed that both proteins were expressed in the mouse kidney. RhBG localization with immunohistochemistry revealed discrete basolateral labeling in the connecting segment (CNT) and in the majority of initial collecting tubule (ICT) and cortical collecting duct (CCD) cells. In the outer medullary collecting duct (OMCD) and inner medullary collecting duct (IMCD) only a subpopulation of cells exhibited basolateral immunoreactivity. Colocalization of RhBG with carbonic anhydrase II, the thiazide-sensitive transporter, and the anion exchangers AE1 and pendrin demonstrated RhBG immunoreactivity in all CNT cells and all CCD and ICT principal cells. In the ICT and CCD, basolateral RhBG immunoreactivity is also present in A-type intercalated cells but not in pendrin-positive CCD intercalated cells. In the OMCD and IMCD, only intercalated cells exhibit RhBG immunoreactivity. Immunoreactivity for a second putative ammonium transporter, RhCG, was present in the apical region of cells with almost the same distribution as RhBG. However, RhCG immunoreactivity was present in all CCD cells, and it was present in outer stripe OMCD principal cells, in addition to OMCD and IMCD intercalated cells. Thus the majority of RhBG and RhCG protein expression is present in the same epithelial cell types in the CNT and collecting duct but with opposite polarity. These findings suggest that RhBG and RhCG may play important and cell-specific roles in ammonium transport and signaling in these regions of the kidney.


1990 ◽  
Vol 259 (6) ◽  
pp. C920-C932 ◽  
Author(s):  
W. I. Lencer ◽  
D. Brown ◽  
D. A. Ausiello ◽  
A. S. Verkman

Vasopressin action in the renal collecting duct is believed to be mediated by the cycling of water channels in principal and, possibly, intercalated cells. We used 6-carboxyfluorescein (6-CF) or fluorescein-labeled dextran (FITC-dextran) to determine the location and water permeability of endocytic vesicles from papilla and inner stripe of Brattleboro rats in different states of diuresis. Fifteen minutes after FITC-dextran infusion, fluorescent vesicles were concentrated at the apical pole of principal and intercalated cells. The osmotic water permeability (Pf) of these endosomes was measured by fluorescence quenching. In papillary endosomes, Pf was high (0.04 +/- 0.004 cm/s) when rats were in physiological states of antidiuresis or after treatment with vasopressin, 1-desamino-8-D-arginine vasopressin (DDAVP), or oxytocin; endosomes isolated from these regions of untreated animals had a low Pf. The number of papillary endosomes with high Pf increased with increasing doses of DDAVP. Endosomes from the inner stripe also had a high Pf only after vasopressin treatment. Confocal microscopy of sections of papilla showed that vasopressin significantly increased endocytosis in principal cells but had no effect on intercalated cells. Our data demonstrate that the bulk of fluorescently labeled vesicles from the papilla originate from the apical membrane of principal cells and contain water channels in their limiting membrane only when the rats are in physiological states of antidiuresis. In contrast, the majority of endocytosis in intercalated cells is not involved in water channel recycling.


2013 ◽  
Vol 304 (5) ◽  
pp. F522-F532 ◽  
Author(s):  
Luca Vedovelli ◽  
John T. Rothermel ◽  
Karin E. Finberg ◽  
Carsten A. Wagner ◽  
Anie Azroyan ◽  
...  

Unlike human patients with mutations in the 56-kDa B1 subunit isoform of the vacuolar proton-pumping ATPase (V-ATPase), B1-deficient mice (Atp6v1b1−/−) do not develop metabolic acidosis under baseline conditions. This is due to the insertion of V-ATPases containing the alternative B2 subunit isoform into the apical membrane of renal medullary collecting duct intercalated cells (ICs). We previously reported that quantitative Western blots (WBs) from whole kidneys showed similar B2 protein levels in Atp6v1b1−/− and wild-type mice (Păunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D. Am J Physiol Renal Physiol 293: F1915–F1926, 2007). However, WBs from renal medulla (including outer and inner medulla) membrane and cytosol fractions reveal a decrease in the levels of the ubiquitous V-ATPase E1 subunit. To compare V-ATPase expression specifically in ICs from wild-type and Atp6v1b1−/− mice, we crossed mice in which EGFP expression is driven by the B1 subunit promoter (EGFP-B1+/+ mice) with Atp6v1b1−/− mice to generate novel EGFP-B1−/− mice. We isolated pure IC populations by fluorescence-assisted cell sorting from EGFP-B1+/+ and EGFP-B1−/− mice to compare their V-ATPase subunit protein levels. We report that V-ATPase A, E1, and H subunits are all significantly downregulated in EGFP-B1−/− mice, while the B2 protein level is considerably increased in these animals. We conclude that under baseline conditions B2 upregulation compensates for the lack of B1 and is sufficient to maintain basal acid-base homeostasis, even when other V-ATPase subunits are downregulated.


Sign in / Sign up

Export Citation Format

Share Document