scholarly journals Human linear B-cell epitopes encoded by the hepatitis E virus include determinants in the RNA-dependent RNA polymerase.

1992 ◽  
Vol 89 (9) ◽  
pp. 3855-3858 ◽  
Author(s):  
M. Kaur ◽  
K. C. Hyams ◽  
M. A. Purdy ◽  
K. Krawczynski ◽  
W. M. Ching ◽  
...  
1993 ◽  
Vol 109 (2-3) ◽  
pp. 251-255 ◽  
Author(s):  
Pierre Coursaget ◽  
Yves Buisson ◽  
Nathalie Depril ◽  
Pierre Cann ◽  
Martine Chabaud ◽  
...  

2015 ◽  
Vol 89 (10) ◽  
pp. 5491-5501 ◽  
Author(s):  
Xinjie Wang ◽  
Qin Zhao ◽  
Lu Dang ◽  
Yani Sun ◽  
Jiming Gao ◽  
...  

ABSTRACTAntisera raised against the avian hepatitis E virus (HEV) capsid protein are cross-reactive with human and swine HEV capsid proteins. In this study, two monoclonal antibodies (MAbs) against the avian HEV capsid protein, namely, 3E8 and 1B5, were shown to cross-react with the swine HEV capsid protein. The motifs involved in binding both MAbs were identified and characterized using phage display biopanning, peptide synthesis, and truncated or mutated protein expression, along with indirect enzyme-linked immunosorbent assay (ELISA) and Western blotting. The results showed that the I/VPHD motif is a necessary core sequence and that P and H are two key amino acids for recognition by MAb 3E8. The VKLYM/TS motif is the minimal amino acid sequence necessary for recognition by MAb 1B5. Cross-reactivity between the two epitopes and antibodies against avian, swine, and human HEVs in sera showed that both epitopes are common to avian, swine, and human HEVs. In addition, amino acid sequence alignment of the capsid proteins revealed that the key motifs of both novel epitopes are the same in HEVs from different animal species, predicting that they may be common to HEV isolates from boars, rabbits, rats, ferrets, mongooses, deer, and camels as well. Protein modeling analysis showed that both epitopes are at least partially exposed on the surface of the HEV capsid protein. Protective capacity analysis demonstrated that the two epitopes are nonprotective against avian HEV infection in chickens. Collectively, these studies characterize two novel linear B-cell epitopes common to avian, swine, and human HEVs, which furthers the understanding of HEV capsid protein antigenic structure.IMPORTANCEMore and more evidence indicates that the host range diversity of hepatitis E virus (HEV) is a global public health concern. A better understanding of the antigenic structure of the HEV capsid protein may improve disease diagnosis and prevention. In this study, binding site mapping and localization as well as the antigenic biology of two novel linear B-cell epitopes common to several different species of HEV were characterized. These findings partially reveal the antigenic structure of the HEV capsid protein and provide potential applications for the development of diagnostics and interventions for HEV infection.


Hepatology ◽  
2021 ◽  
Author(s):  
Noémie Oechslin ◽  
Nathalie Da Silva ◽  
Dagmara Szkolnicka ◽  
François‐Xavier Cantrelle ◽  
Xavier Hanoulle ◽  
...  

2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Nidhi Kaushik ◽  
Chandru Subramani ◽  
Saumya Anang ◽  
Rajagopalan Muthumohan ◽  
Shalimar ◽  
...  

ABSTRACT Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis in healthy individuals and leads to chronic disease in immunocompromised individuals. HEV infection in pregnant women results in a more severe outcome, with the mortality rate going up to 30%. Though the virus usually causes sporadic infection, epidemics have been reported in developing and resource-starved countries. No specific antiviral exists against HEV. A combination of interferon and ribavirin therapy has been used to control the disease with some success. Zinc is an essential micronutrient that plays crucial roles in multiple cellular processes. Zinc salts are known to be effective in reducing infections caused by few viruses. Here, we investigated the effect of zinc salts on HEV replication. In a human hepatoma cell (Huh7) culture model, zinc salts inhibited the replication of genotype 1 (g-1) and g-3 HEV replicons and g-1 HEV infectious genomic RNA in a dose-dependent manner. Analysis of a replication-defective mutant of g-1 HEV genomic RNA under similar conditions ruled out the possibility of zinc salts acting on replication-independent processes. An ORF4-Huh7 cell line-based infection model of g-1 HEV further confirmed the above observations. Zinc salts did not show any effect on the entry of g-1 HEV into the host cell. Furthermore, our data reveal that zinc salts directly inhibit the activity of viral RNA-dependent RNA polymerase (RdRp), leading to inhibition of viral replication. Taken together, these studies unravel the ability of zinc salts in inhibiting HEV replication, suggesting their possible therapeutic value in controlling HEV infection. IMPORTANCE Hepatitis E virus (HEV) is a public health concern in resource-starved countries due to frequent outbreaks. It is also emerging as a health concern in developed countries owing to its ability to cause acute and chronic infection in organ transplant and immunocompromised individuals. Although antivirals such as ribavirin have been used to treat HEV cases, there are known side effects and limitations of such therapy. Our discovery of the ability of zinc salts to block HEV replication by virtue of their ability to inhibit the activity of viral RdRp is important because these findings pave the way to test the efficacy of zinc supplementation therapy in HEV-infected patients. Since zinc supplementation therapy is known to be safe in healthy individuals and since high-dose zinc is used in the treatment of Wilson's disease, it may be possible to control HEV-associated health problems following a similar treatment regimen.


2016 ◽  
Vol 97 (9) ◽  
pp. 2231-2242 ◽  
Author(s):  
Shakuntala Mahilkar ◽  
Mandar S. Paingankar ◽  
Kavita S. Lole

2006 ◽  
Vol 87 (1) ◽  
pp. 217-223 ◽  
Author(s):  
H. Guo ◽  
E.-M. Zhou ◽  
Z. F. Sun ◽  
X.-J. Meng ◽  
P. G. Halbur

Avian hepatitis E virus (avian HEV) was recently discovered in chickens from the USA that had hepatitis–splenomegaly (HS) syndrome. The complete genomic sequence of avian HEV shares about 50 % nucleotide sequence identity with those of human and swine HEVs. The open reading frame 2 (ORF2) protein of avian HEV has been shown to cross-react with human and swine HEV ORF2 proteins, but the B-cell epitopes in the avian HEV ORF2 protein have not been identified. Nine synthetic peptides from the predicted four antigenic domains of the avian HEV ORF2 protein were synthesized and corresponding rabbit anti-peptide antisera were generated. Using recombinant ORF2 proteins, convalescent pig and chicken antisera, peptides and anti-peptide rabbit sera, at least one epitope at the C terminus of domain II (possibly between aa 477–492) that is unique to avian HEV, one epitope in domain I (aa 389–410) that is common to avian, human and swine HEVs, and one or more epitopes in domain IV (aa 583–600) that are shared between avian and human HEVs were identified. Despite the sequence difference in ORF2 proteins between avian and mammalian HEVs and similar ORF2 sequence between human and swine HEV ORF2 proteins, rabbit antiserum against peptide 6 (aa 389–399) recognized only human HEV ORF2 protein, suggesting complexity of the ORF2 antigenicity. The identification of these B-cell epitopes in avian HEV ORF2 protein may be useful for vaccine design and may lead to future development of immunoassays for differential diagnosis of avian, swine and human HEV infections.


Sign in / Sign up

Export Citation Format

Share Document