infectious particle
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 19)

H-INDEX

17
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Leonora Szirovicza ◽  
Udo Hetzel ◽  
Anja Kipar ◽  
Jussi Hepojoki

Human hepatitis D virus (HDV), discovered in 1977, represented the sole known deltavirus for decades. The dependence on hepatitis B virus (HBV) co-infection and its glycoproteins for infectious particle formation led to the assumption that deltaviruses are human-only pathogens. However, since 2018, several reports have described identification of HDV-like agents from various hosts but without co-infecting hepadnaviruses. Indeed, we demonstrated that Swiss snake colony virus 1 (SwSCV-1) uses arenaviruses as the helper for infectious particle formation, thus shaking the dogmatic alliance with hepadnaviruses for completing deltavirus life cycle. In vitro systems enabling helper virus-independent replication are key for studying the newly discovered deltaviruses. Others and we have successfully used constructs containing multimers of the deltavirus genome for the replication of various deltaviruses via transfection in cell culture. Here, we report the establishment of deltavirus infectious clones with 1.2× genome inserts bearing two copies of the genomic and antigenomic ribozymes. We used SwSCV-1 as the model to compare the ability of the previously reported "2× genome" and the "1.2× genome" plasmid constructs/infectious clones to initiate replication in cell culture. Using immunofluorescence, qRT-PCR, immuno- and northern blotting, we found the 2× and 1.2× genome clones to similarly initiate deltavirus replication in vitro and both induced a persistent infection of snake cells. We hypothesize that duplicating the ribozymes facilitates the cleavage of genome multimers into unit-length pieces during the initial round of replication. The 1.2× genome constructs enable easier introduction of modifications required for studying deltavirus replication and cellular interactions.


Hepatology ◽  
2021 ◽  
Author(s):  
Noémie Oechslin ◽  
Nathalie Da Silva ◽  
Dagmara Szkolnicka ◽  
François‐Xavier Cantrelle ◽  
Xavier Hanoulle ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Muchen Pan ◽  
Ana L. Alvarez-Cabrera ◽  
Joon S. Kang ◽  
Lihua Wang ◽  
Chunhai Fan ◽  
...  

AbstractMammalian reovirus (MRV) is the prototypical member of genus Orthoreovirus of family Reoviridae. However, lacking high-resolution structures of its RNA polymerase cofactor μ2 and infectious particle, limits understanding of molecular interactions among proteins and RNA, and their contributions to virion assembly and RNA transcription. Here, we report the 3.3 Å-resolution asymmetric reconstruction of transcribing MRV and in situ atomic models of its capsid proteins, the asymmetrically attached RNA-dependent RNA polymerase (RdRp) λ3, and RdRp-bound nucleoside triphosphatase μ2 with a unique RNA-binding domain. We reveal molecular interactions among virion proteins and genomic and messenger RNA. Polymerase complexes in three Spinoreovirinae subfamily members are organized with different pseudo-D3d symmetries to engage their highly diversified genomes. The above interactions and those between symmetry-mismatched receptor-binding σ1 trimers and RNA-capping λ2 pentamers balance competing needs of capsid assembly, external protein removal, and allosteric triggering of endogenous RNA transcription, before, during and after infection, respectively.


2020 ◽  
Author(s):  
Madoka Sakai ◽  
Yoko Fujita ◽  
Ryo Komorizono ◽  
Takehiro Kanda ◽  
Yumiko Komatsu ◽  
...  

An RNA virus-based episomal vector (REVec) whose backbone is Borna disease virus 1 (BoDV-1) can provide long-term gene expression in transduced cells. To improve the transduction efficiency of REVec, we evaluated the role of the viral envelope glycoprotein (G) of the genus Orthobornavirus, including that of BoDV-1, in the production of infectious particles. By using G-pseudotype assay in which the lack of G in G-deficient REVec (ΔG-REVec) was compensated for expression of G, we found that excess expression of BoDV-1-G does not affect particle production itself but results in uncleaved and aberrant mature G expression in the cells, leading to the production of REVec particles with low transduction titers. We revealed that the expression of uncleaved G in the cells inhibits the incorporation of mature G and vgRNA into the particles. This feature of G was conserved among mammalian and avian orthobornaviruses; however, the cleavage efficacy of canary bornavirus 1 (CnBV-1)-G was exceptionally not impaired by its excess expression, which led to the production of the pseudotype ΔG-REVec with the highest titer. Chimeric G proteins between CnBV-1 and -2 revealed that the signal peptide of CnBV-1-G was responsible for the cleavage efficacy through the interaction with intracellular furin. We showed that CnBV-1 G leads to the development of pseudotyped REVec with high transduction efficiency and a high-titer recombinant REVec. Our study demonstrated that the restricted expression of orthobornavirus G contributes to the regulation of infectious particle production, the mechanism of which can improve the transduction efficiency of REVec. IMPORTANCE Most viruses causing persistent infection produce few infectious particles from the infected cells. Borna disease virus 1, a member of the genus Orthobornavirus, is an RNA virus that persistently infects the nucleus and has been applied to vectors for long-term gene expression. In this study, we showed that, common among orthobornaviruses, excessive G expression does not affect particle production itself but reduces the production of infectious particles with mature G and genomic RNA. This result suggested that limited G expression contributes to suppressing abnormal viral particle production. On the other hand, we found that canary bornavirus 1 has an exceptional G maturation mechanism and produces a high-titer virus. Our study will contribute to not only understanding the mechanism of infectious particle production but also improving the vector system of orthobornaviruses.


2020 ◽  
Vol 94 (21) ◽  
Author(s):  
Marc C. Johnson ◽  
Terri D. Lyddon ◽  
Reinier Suarez ◽  
Braxton Salcedo ◽  
Mary LePique ◽  
...  

ABSTRACT The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) Spike glycoprotein is solely responsible for binding to the host cell receptor and facilitating fusion between the viral and host membranes. The ability to generate viral particles pseudotyped with SARS-COV-2 Spike is useful for many types of studies, such as characterization of neutralizing antibodies or development of fusion-inhibiting small molecules. Here, we characterized the use of a codon-optimized SARS-COV-2 Spike glycoprotein for the generation of pseudotyped HIV-1, murine leukemia virus (MLV), and vesicular stomatitis virus (VSV) particles. The full-length Spike protein functioned inefficiently with all three systems but was enhanced over 10-fold by deleting the last 19 amino acids of the cytoplasmic tail. Infection of 293FT target cells was possible only if the cells were engineered to stably express the human angiotensin-converting enzyme 2 (ACE2) receptor, but stably introducing an additional copy of this receptor did not further enhance susceptibility. Stable introduction of the Spike-activating protease TMPRSS2 further enhanced susceptibility to infection by 5- to 10-fold. Replacement of the signal peptide of the Spike protein with an optimal signal peptide did not enhance or reduce infectious particle production. However, modifications D614G and R682Q further enhanced infectious particle production. With all enhancing elements combined, the titer of pseudotyped HIV-1 particles reached almost 106 infectious particles/ml. Finally, HIV-1 particles pseudotyped with SARS-COV-2 Spike were successfully used to detect neutralizing antibodies in plasma from coronavirus disease 2019 (COVID-19) patients, but not in plasma from uninfected individuals. IMPORTANCE In work with pathogenic viruses, it is useful to have rapid quantitative tests for viral infectivity that can be performed without strict biocontainment restrictions. A common way of accomplishing this is to generate viral pseudoparticles that contain the surface glycoprotein from the pathogenic virus incorporated into a replication-defective viral particle that contains a sensitive reporter system. These pseudoparticles enter cells using the glycoprotein from the pathogenic virus, leading to a readout for infection. Conditions that block entry of the pathogenic virus, such as neutralizing antibodies, will also block entry of the viral pseudoparticles. However, viral glycoproteins often are not readily suited for generating pseudoparticles. Here, we describe a series of modifications that result in the production of relatively high-titer SARS-COV-2 pseudoparticles that are suitable for the detection of neutralizing antibodies from COVID-19 patients.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 654
Author(s):  
Molly Butler ◽  
Nunya Chotiwan ◽  
Connie D. Brewster ◽  
James E. DiLisio ◽  
David F. Ackart ◽  
...  

Dengue virus infection is associated with the upregulation of metabolic pathways within infected cells. This effect is common to infection by a broad array of viruses. These metabolic changes, including increased glucose metabolism, oxidative phosphorylation and autophagy, support the demands of viral genome replication and infectious particle formation. The mechanisms by which these changes occur are known to be, in part, directed by viral nonstructural proteins that contact and control cellular structures and metabolic enzymes. We investigated the roles of host proteins with overarching control of metabolic processes, the transcriptional regulators, cyclin-dependent kinase 8 (CDK8) and its paralog, CDK19, as mediators of virally induced metabolic changes. Here, we show that expression of CDK8, but not CDK19, is increased during dengue virus infection in Huh7 human hepatocellular carcinoma cells, although both are required for efficient viral replication. Chemical inhibition of CDK8 and CDK19 with Senexin A during infection blocks virus-induced expression of select metabolic and autophagic genes, hexokinase 2 (HK2) and microtubule-associated protein 1 light chain 3 (LC3), and reduces viral genome replication and infectious particle production. The results further define the dependence of virus replication on increased metabolic capacity in target cells and identify CDK8 and CDK19 as master regulators of key metabolic genes. The common inhibition of CDK8 and CDK19 offers a host-directed therapeutic intervention that is unlikely to be overcome by viral evolution.


Author(s):  
Marc C. Johnson ◽  
Terri D. Lyddon ◽  
Reinier Suarez ◽  
Braxton Salcedo ◽  
Mary LePique ◽  
...  

AbstractThe SARS-COV2 Spike glycoprotein is solely responsible for binding to the host cell receptor and facilitating fusion between the viral and host membranes. The ability to generate viral particles pseudotyped with SARS-COV2 Spike is useful for many types of studies, such as characterization of neutralizing antibodies or development of fusion-inhibiting small molecules. Here we characterized the use of a codon-optimized SARS-COV2 Spike glycoprotein for the generation of pseudotyped HIV-1, MLV, and VSV particles. The full-length Spike protein functioned inefficiently with all three systems but was enhanced over 10-fold by deleting the last 19 amino acids of the cytoplasmic tail of Spike. Infection of 293FT target cells was only possible if the cells were engineered to stably express the human ACE-2 receptor, but stably introducing an additional copy of this receptor did not further enhance susceptibility. Stable introduction of the Spike activating protease TMPRSS2 further enhanced susceptibility to infection by 5-10 fold. Substitution of the signal peptide of the Spike protein with an optimal signal peptide did not enhance or reduce infectious particle production. However, modification of a single amino acid in the furin cleavage site of Spike (R682Q) enhanced infectious particle production another 10-fold. With all enhancing elements combined, the titer of pseudotyped particles reached almost 106 infectious particles/ml. Finally, HIV-1 particles pseudotyped with SARS-COV2 Spike was successfully used to detect neutralizing antibodies in plasma from COVID-19 patients, but not plasma from uninfected individuals.ImportanceWhen working with pathogenic viruses, it is useful to have rapid quantitative tests for viral infectivity that can be performed without strict biocontainment restrictions. A common way of accomplishing this is to generate viral pseudoparticles that contain the surface glycoprotein from the pathogenic virus incorporated into a replication-defective viral particle that contains a sensitive reporter system. These pseudoparticles enter cells using the glycoprotein from the pathogenic virus leading to a readout for infection. Conditions that block entry of the pathogenic virus, such as neutralizing antibodies, will also block entry of the viral pseudoparticles. However, viral glycoproteins often are not readily suited for generating pseudoparticles. Here we describe a series of modifications that result in the production of relatively high titer SARS-COV2 pseudoparticles that are suitable for detection of neutralizing antibodies from COVID-19 patients.


2020 ◽  
Author(s):  
Clifton L Ricana ◽  
Terri D Lyddon ◽  
Robert A Dick ◽  
Marc C Johnson

AbstractInositol hexakisphosphate (IP6) potently stimulates HIV-1 particle assembly in vitro and infectious particle production in vivo. However, knockout cells lacking the enzyme inositol-pentakisphosphate 2-kinase (IPPK-KO), which adds the final phosphate to inositol pentakisphosphate (IP5) to produce IP6, were still able to produce infectious HIV-1 particles at a greatly reduced rate. HIV-1 in vitro assembly can also be stimulated to a lesser extent with IP5, but it was not known if IP5 could also function in promoting assembly in vivo. IPPK-KO cells expressed no detectable IP6 but elevated IP5 levels and displayed a 20-100-fold reduction in infectious particle production, correlating with lost virus release. Transient transfection of an IPPK expression vector stimulated infectious particle production and release in IPPK-KOs but not in wildtype cells. Several attempts to make an IP6 and IP5 deficient stable cell line were not successful, but transient expression of multiple inositol polyphosphate phosphatase-1 (MINPP1) into IPPK-KOs resulted in the near ablation of IP6 and IP5. Under these conditions, HIV-1 infectious particle production and virus release were essentially abolished (1000-fold reduction). However, other retroviruses including a Gammaretrovirus, a Betaretrovirus, and two non-primate Lentiviruses displayed only a modest (3-fold) reduction in infectious particle production from IPPK-KOs and were not significantly altered by expression of IPPK or MINPP1. The only other retrovirus found that showed a clear IP6/IP5 dependence was the primate (macaque) Lentivirus Simian Immunodeficiency Virus (SIV-mac), which displayed similar sensitivity to IP6/IP5 levels as HIV-1. Finally, we found that loss of IP6/IP5 in viral target cells had no effect on permissiveness to HIV-1 infection. However, because it was not possible to generate viral particles devoid of IP6 and IP5, we were not able to determine if IP6 or IP5 derived from the virus producer cells is required at additional steps beyond assembly.Author SummaryInositol hexakisphosphate (IP6) is a co-factor required for efficient production of infectious HIV-1 particles. The HIV-1 structural protein Gag forms a hexagonal lattice structure. The negatively charged IP6 sits in the middle of the hexamer and stabilizes a ring of positively charged lysines. Previously described results show that depletion of IP6 reduces, but does not eliminate, infectious virus production. This depletion was achieved through knock-out of inositol-pentakisphosphate 2-kinase (IPPK-KO), the enzyme responsible for adding the sixth and final phosphate to the molecule. Whether IP6 is required, another inositol phosphate can substitute, or IP6 is simply acting as an enhancer for virus production was unknown. Here, we show that loss of IP6 and inositol pentakisphosphate (IP5) abolishes infectious HIV-1 production from cells. We do this through a cell-based system using transiently expressed proteins to restore or deplete IP6 and IP5 in the IPPK-KO cell line. We further show that the IP6 and IP5 requirement is a feature of primate lentiviruses, but not all retroviruses, and that IP6 and IP5 is required in the producer but not the target cell for HIV-1 infection.


2020 ◽  
Vol 33 (02) ◽  
pp. 058-066
Author(s):  
Aimee Shen

AbstractThe Gram-positive, spore-forming bacterium, Clostridioides difficile is the leading cause of healthcare-associated infections in the United States, although it also causes a significant number of community-acquired infections. C. difficile infections, which range in severity from mild diarrhea to toxic megacolon, cost more to treat than matched infections, with an annual treatment cost of approximately $6 billion for almost half-a-million infections. These high–treatment costs are due to the high rates of C. difficile disease recurrence (>20%) and necessity for special disinfection measures. These complications arise in part because C. difficile makes metabolically dormant spores, which are the major infectious particle of this obligate anaerobe. These seemingly inanimate life forms are inert to antibiotics, resistant to commonly used disinfectants, readily disseminated, and capable of surviving in the environment for a long period of time. However, upon sensing specific bile salts in the vertebrate gut, C. difficile spores transform back into the vegetative cells that are responsible for causing disease. This review discusses how spores are ideal vectors for disease transmission and how antibiotics modulate this process. We also describe the resistance properties of spores and how they create challenges eradicating spores, as well as promote their spread. Lastly, environmental reservoirs of C. difficile spores and strategies for destroying them particularly in health care environments will be discussed.


Sign in / Sign up

Export Citation Format

Share Document